Prethick subsets in partitions of groups
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 267-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $S$ of a group $G$ is called thick if, for any finite subset $F$ of $G$, there exists $g\in G$ such that $Fg\subseteq S$, and $k$-prethick, $k\in \mathbb{N}$ if there exists a subset $K$ of $G$ such that $|K|=k$ and $KS$ is thick. For every finite partition $\mathcal{P}$ of $G$, at least one cell of $\mathcal{P}$ is $k$-prethick for some $k\in \mathbb{N}$. We show that if an infinite group $G$ is either Abelian, or countable locally finite, or countable residually finite then, for each $k\in \mathbb{N}$, $G$ can be partitioned in two not $k$-prethick subsets.
Keywords: thick and $k$-prethick subsets of groups, $k$-meager partition of a group.
@article{ADM_2012_14_2_a9,
     author = {Igor Protasov and Sergiy Slobodianiuk},
     title = {Prethick subsets in partitions of groups},
     journal = {Algebra and discrete mathematics},
     pages = {267--275},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a9/}
}
TY  - JOUR
AU  - Igor Protasov
AU  - Sergiy Slobodianiuk
TI  - Prethick subsets in partitions of groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 267
EP  - 275
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a9/
LA  - en
ID  - ADM_2012_14_2_a9
ER  - 
%0 Journal Article
%A Igor Protasov
%A Sergiy Slobodianiuk
%T Prethick subsets in partitions of groups
%J Algebra and discrete mathematics
%D 2012
%P 267-275
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a9/
%G en
%F ADM_2012_14_2_a9
Igor Protasov; Sergiy Slobodianiuk. Prethick subsets in partitions of groups. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 267-275. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a9/

[1] T. Banakh, N. Lyaskovska, “Weakly $P$-small not $P$-small subsets in groups”, Intern. J. Algebra Computation, 18 (2008), 1–6 | DOI | MR | Zbl

[2] T. Banakh, N. Lyaskovska, D. Repovš, “Packing index of subsets in Polish groups”, Notre Dame J. Formal Logic, 50 (2009), 453–468 | DOI | MR | Zbl

[3] A. Bella, V. Malykhin, “Certain subsets of a group”, Questions Answers General Topology, 17 (1999), 183–187 | MR

[4] T. Carlson, N. Hindman, J. Mcleod, D. Strauss, “Almost disjoint large subsets of a semigroups”, Topology Appl., 155 (2008), 433–444 | DOI | MR | Zbl

[5] L. Fuchs, Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl

[6] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: Theory and Applications, Walter de Grueter, Berlin–New York, 1998 | MR

[7] The Kourovka Notebook, Novosibirsk, 1995

[8] N. Lyaskovska, “Constructing subsets of given packing index in Abelian groups”, Acta Universitatis Carolinae, Mathematica et Phisica, 48 (2007), 69–80 | MR

[9] V. Malykhin, I. Protasov, “Maximal resolvability of bounded groups”, Topology Appl., 20 (1996), 1–6 | MR

[10] I. Prodanov, “Some minimal topologies are precompact”, Math. Ann., 227 (1977), 117–125 | DOI | MR

[11] I. Protasov, “Partition of groups into large subsets”, Math. Notes, 73 (2003), 271–281 | DOI | MR

[12] I. Protasov, “Small systems of generators of groups”, Math. Notes, 76 (2004), 420–426 | DOI | MR

[13] I. Protasov, “Cellularity and density of balleans”, Appl. General Topology, 8 (2007), 283–291 | MR

[14] I. Protasov, “Selective survey on Subset Combinatorics of Groups”, Ukr. Math. Bull., 7 (2010), 220–257 | MR

[15] I. Protasov, “Partition of groups into thin subsets”, Algebra and Discrete Math., 11 (2011), 88–92 | MR

[16] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., 11, VNTL Publishers, Lviv, 2003 | MR

[17] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL Publishers, Lviv, 2007 | MR

[18] G. Weinstein, “Minimal complementary sets”, Trans. AMS, 212 (1975), 131–137 | DOI | MR