The symmetries of McCullough--Miller space
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 239-266
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if $W$ is the free product of at least four groups of order $2$, then the automorphism group of the McCullough-Miller space corresponding to $W$ is isomorphic to group of outer automorphisms of $W$. We also prove that, for each integer $n \geq 3$, the automorphism group of the hypertree complex of rank $n$ is isomorphic to the symmetric group of rank $n$.
Keywords:
Autmorphisms of groups; group actions on simplicial complexes; Coxeter groups; McCullough-Miller space; hypertrees.
@article{ADM_2012_14_2_a8,
author = {Adam Piggott},
title = {The symmetries of {McCullough--Miller} space},
journal = {Algebra and discrete mathematics},
pages = {239--266},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a8/}
}
Adam Piggott. The symmetries of McCullough--Miller space. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 239-266. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a8/