@article{ADM_2012_14_2_a8,
author = {Adam Piggott},
title = {The symmetries of {McCullough{\textendash}Miller} space},
journal = {Algebra and discrete mathematics},
pages = {239--266},
year = {2012},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a8/}
}
Adam Piggott. The symmetries of McCullough–Miller space. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 239-266. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a8/
[1] The On-Line Encyclopedia of Integer Sequences, Published electronically at , 2011 http://oeis.org
[2] M. R. Bridson, K. Vogtmann, “The symmetries of outer space”, Duke Math. J., 106:2 (2001), 391–409 | DOI | MR | Zbl
[3] N. D. Gilbert, “Presentations of the automorphism group of a free product”, Proc. London Math. Soc. (3), 54:1 (1987), 115–140 | DOI | MR | Zbl
[4] L. Kalikow, Enumeration of parking functions, allowable permutation pairs, and labeled trees, PhD thesis, Brandeis University, 1999 | MR
[5] J. McCammond, J. Meier, “The hypertree poset and the $l^2$-Betti numbers of the motion group of the trivial link”, Math. Ann., 328:4 (2004), 633–652 | DOI | MR | Zbl
[6] D. McCullough, A. Miller, Symmetric automorphisms of free products, Mem. Amer. Math. Soc., 122, no. 582, 1996 | MR
[7] D. Warme, Spanning trees in hypergraphs with applications to Steiner trees, PhD thesis, University of Virginia, 1998 | MR