Orthoscalar representations of the partially ordered set $(N, 4)$
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 217-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a one-parameter series of orthoscalar representations of the partially ordered set $(N, 4)$. This proves that the classification of such representations is a problem of infinite type.
Keywords: partially ordered set, orthoscalar representation, infinite type.
@article{ADM_2012_14_2_a5,
     author = {S. A. Kruglyak and I. V. Livinsky},
     title = {Orthoscalar representations of the partially ordered set $(N, 4)$},
     journal = {Algebra and discrete mathematics},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - I. V. Livinsky
TI  - Orthoscalar representations of the partially ordered set $(N, 4)$
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 217
EP  - 229
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/
LA  - en
ID  - ADM_2012_14_2_a5
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A I. V. Livinsky
%T Orthoscalar representations of the partially ordered set $(N, 4)$
%J Algebra and discrete mathematics
%D 2012
%P 217-229
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/
%G en
%F ADM_2012_14_2_a5
S. A. Kruglyak; I. V. Livinsky. Orthoscalar representations of the partially ordered set $(N, 4)$. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/

[1] Ostrovskyi V., Samoilenko Yu., “Introduction to the theory of representations of finitely presented $\ast$-algebras. I: Representations by bounded operators”, Rev. Math. and Phys., 11:1 (1999), 261 pp. | MR | Zbl

[2] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “On sums of projectors”, Funkts. Anal. Prilozhen., 36:3 (2002), 20–35 | MR | Zbl

[3] S. Albeverio, V. Ostrovskyi, Yu. Samoilenko, “On functions on graphs and representations of a certain class of $\ast$-algebras”, J. Algebra, 308 (2007), 567 – 582 | DOI | MR | Zbl

[4] S. A. Kruglyak, A. V. Roiter, “Locally scalar representations of graphs in the category of Hilbert spaces”, Funkts. Anal. Prilozhen., 39:2 (2005), 13–30 | MR | Zbl

[5] I. K. Redchuk, A. V. Roiter, “Singular locally scalar representations of quivers in Hilbert spaces and separating functions”, Ukr. Mat. Zh., 56:6 (2004), 796–809 | DOI | MR | Zbl

[6] S. A. Kruglyak, L. A. Nazarova, A. V. Roiter, “Orthoscalar representations of quivers in the category of Hilbert spaces”, Zap. Nauch. Sem. POMI, 338, 2006, 180–199 | MR

[7] A. V. Roiter, S. A. Kruglyak, L. A. Nazarova, “Orthoscalar representations of quivers corresponding to extended Dynkin graphs in the category of Hilbert spaces”, Funkts. Anal. Prilozhen., 44:1 (2010), 57–73 | MR | Zbl

[8] A. S. Mellit, “On the case where the sum of three partial reflections is equal to zero”, Ukr. Mat. Zh., 55:9 (2003), 1277–1283 | DOI | MR | Zbl

[9] V. L. Ostrovs'kyi, “Representations of an algebra associated with Dynkin graph $\widetilde{E}_7$”, Ukr. Math. Zh., 56:9 (2004), 1193–1202 | MR

[10] A. Mellit, Certain examples of deformed preprojective algebras and geometry of their $\ast$-representations, arXiv: math/0502055

[11] S. A. Kruglyak, I. V. Livinskyi, “Regular orthoscalar representations of extended Dynkin graph $\tilde{E}_8$ and of $\ast$-algebra associated with it”, Ukr. Mat. Zh., 62:8 (2010), 1044–1061

[12] I. V. Livinskyi, “Regular orthoscalar representations of extended Dynkin graphs $\widetilde{E}_6$ and $\widetilde{E}_7$ and of $\ast$-algebras associated with them”, Ukr. Mat. Zh., 62:11 (2010), 1459–1472 | MR

[13] L. A. Nazarova, A. V. Roiter, “Representations of posets”, Zap. Nauch. Sem. LOMI, 28, 5–31, 1972 | MR

[14] M. M. Kleiner, “Partially ordered sets of finite type”, Zap. Nauch. Sem. LOMI, 28, 1972, 32–41 | MR | Zbl

[15] S. A. Kruglyak, S. V. Popovich, Yu. S. Samoilenko, “Representations of $\ast$-algebras associated with Dynkin graphs and Horn's problem”, Uchen. Zap. Tavr. Nats. Univ., 16(55) (2003), 133–139

[16] A. V. Roiter, “Boxes with an involution”, Representations and quadratic forms, K., 1979, 124–126 | MR

[17] Yusenko K., Samoilenko Yu., Kleiner's theorem for unitary representations of posets, 18 Feb 2012, arXiv: 1103.1085v2[math.RT] | MR | Zbl

[18] Futorny V., Samoilenko Yu., Yusenko K., “Representations of posets: linear versus unitary”, Journal of Physics. Conference Series, 346:1, 012006