Orthoscalar representations of the partially ordered set $(N, 4)$
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 217-229

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a one-parameter series of orthoscalar representations of the partially ordered set $(N, 4)$. This proves that the classification of such representations is a problem of infinite type.
Keywords: partially ordered set, orthoscalar representation, infinite type.
@article{ADM_2012_14_2_a5,
     author = {S. A. Kruglyak and I. V. Livinsky},
     title = {Orthoscalar representations of the partially ordered set $(N, 4)$},
     journal = {Algebra and discrete mathematics},
     pages = {217--229},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/}
}
TY  - JOUR
AU  - S. A. Kruglyak
AU  - I. V. Livinsky
TI  - Orthoscalar representations of the partially ordered set $(N, 4)$
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 217
EP  - 229
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/
LA  - en
ID  - ADM_2012_14_2_a5
ER  - 
%0 Journal Article
%A S. A. Kruglyak
%A I. V. Livinsky
%T Orthoscalar representations of the partially ordered set $(N, 4)$
%J Algebra and discrete mathematics
%D 2012
%P 217-229
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/
%G en
%F ADM_2012_14_2_a5
S. A. Kruglyak; I. V. Livinsky. Orthoscalar representations of the partially ordered set $(N, 4)$. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/