Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_2_a5, author = {S. A. Kruglyak and I. V. Livinsky}, title = {Orthoscalar representations of the partially ordered set $(N, 4)$}, journal = {Algebra and discrete mathematics}, pages = {217--229}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/} }
TY - JOUR AU - S. A. Kruglyak AU - I. V. Livinsky TI - Orthoscalar representations of the partially ordered set $(N, 4)$ JO - Algebra and discrete mathematics PY - 2012 SP - 217 EP - 229 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/ LA - en ID - ADM_2012_14_2_a5 ER -
S. A. Kruglyak; I. V. Livinsky. Orthoscalar representations of the partially ordered set $(N, 4)$. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 217-229. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a5/
[1] Ostrovskyi V., Samoilenko Yu., “Introduction to the theory of representations of finitely presented $\ast$-algebras. I: Representations by bounded operators”, Rev. Math. and Phys., 11:1 (1999), 261 pp. | MR | Zbl
[2] S. A. Kruglyak, V. I. Rabanovich, Yu. S. Samoilenko, “On sums of projectors”, Funkts. Anal. Prilozhen., 36:3 (2002), 20–35 | MR | Zbl
[3] S. Albeverio, V. Ostrovskyi, Yu. Samoilenko, “On functions on graphs and representations of a certain class of $\ast$-algebras”, J. Algebra, 308 (2007), 567 – 582 | DOI | MR | Zbl
[4] S. A. Kruglyak, A. V. Roiter, “Locally scalar representations of graphs in the category of Hilbert spaces”, Funkts. Anal. Prilozhen., 39:2 (2005), 13–30 | MR | Zbl
[5] I. K. Redchuk, A. V. Roiter, “Singular locally scalar representations of quivers in Hilbert spaces and separating functions”, Ukr. Mat. Zh., 56:6 (2004), 796–809 | DOI | MR | Zbl
[6] S. A. Kruglyak, L. A. Nazarova, A. V. Roiter, “Orthoscalar representations of quivers in the category of Hilbert spaces”, Zap. Nauch. Sem. POMI, 338, 2006, 180–199 | MR
[7] A. V. Roiter, S. A. Kruglyak, L. A. Nazarova, “Orthoscalar representations of quivers corresponding to extended Dynkin graphs in the category of Hilbert spaces”, Funkts. Anal. Prilozhen., 44:1 (2010), 57–73 | MR | Zbl
[8] A. S. Mellit, “On the case where the sum of three partial reflections is equal to zero”, Ukr. Mat. Zh., 55:9 (2003), 1277–1283 | DOI | MR | Zbl
[9] V. L. Ostrovs'kyi, “Representations of an algebra associated with Dynkin graph $\widetilde{E}_7$”, Ukr. Math. Zh., 56:9 (2004), 1193–1202 | MR
[10] A. Mellit, Certain examples of deformed preprojective algebras and geometry of their $\ast$-representations, arXiv: math/0502055
[11] S. A. Kruglyak, I. V. Livinskyi, “Regular orthoscalar representations of extended Dynkin graph $\tilde{E}_8$ and of $\ast$-algebra associated with it”, Ukr. Mat. Zh., 62:8 (2010), 1044–1061
[12] I. V. Livinskyi, “Regular orthoscalar representations of extended Dynkin graphs $\widetilde{E}_6$ and $\widetilde{E}_7$ and of $\ast$-algebras associated with them”, Ukr. Mat. Zh., 62:11 (2010), 1459–1472 | MR
[13] L. A. Nazarova, A. V. Roiter, “Representations of posets”, Zap. Nauch. Sem. LOMI, 28, 5–31, 1972 | MR
[14] M. M. Kleiner, “Partially ordered sets of finite type”, Zap. Nauch. Sem. LOMI, 28, 1972, 32–41 | MR | Zbl
[15] S. A. Kruglyak, S. V. Popovich, Yu. S. Samoilenko, “Representations of $\ast$-algebras associated with Dynkin graphs and Horn's problem”, Uchen. Zap. Tavr. Nats. Univ., 16(55) (2003), 133–139
[16] A. V. Roiter, “Boxes with an involution”, Representations and quadratic forms, K., 1979, 124–126 | MR
[17] Yusenko K., Samoilenko Yu., Kleiner's theorem for unitary representations of posets, 18 Feb 2012, arXiv: 1103.1085v2[math.RT] | MR | Zbl
[18] Futorny V., Samoilenko Yu., Yusenko K., “Representations of posets: linear versus unitary”, Journal of Physics. Conference Series, 346:1, 012006