On radical square zero rings
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 297-306
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Lambda$ be a connected left artinian ring with radical square zero and with $n$ simple modules. If $\Lambda$ is not self-injective, then we show that any module $M$ with $\operatorname{Ext}^i(M,\Lambda)=0$ for $1 \le i \le n+1$ is projective. We also determine the structure of the artin algebras with radical square zero and $n$ simple modules which have a non-projective module $M$ such that $\operatorname{Ext}^i(M,\Lambda) = 0$ for $1 \le i \le n$.
Keywords:
Artin algebras; left artinian rings; representations, modules; Gorenstein modules, CM modules; self-injective algebras; radical square zero algebras.
@article{ADM_2012_14_2_a11,
author = {Claus Michael Ringel and B.-L. Xiong},
title = {On radical square zero rings},
journal = {Algebra and discrete mathematics},
pages = {297--306},
year = {2012},
volume = {14},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/}
}
Claus Michael Ringel; B.-L. Xiong. On radical square zero rings. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/
[AR] M. Auslander, I. Reiten, “On a generalized version of the Nakayama conjecture”, Proc. Amer. Math. Soc., 52 (1975), 69–74 | DOI | MR
[ARS] M. Auslander, I. Reiten, S. Smalø, Representation Theory of Artin Algebras, Cambridge University Press, 1995 | MR
[C] X.-W. Chen, “Algebras with radical square zero are either self-injective or CM-free”, Proc. Amer. Math. Soc., 140, 93–98 | DOI | MR
[JS] D. A. Jorgensen, L. M. Şega, “Independence of the total reflexivity conditions for modules”, Algebras and Representation Theory, 9 (2006), 217–226 | DOI | MR