On radical square zero rings
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 297-306

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be a connected left artinian ring with radical square zero and with $n$ simple modules. If $\Lambda$ is not self-injective, then we show that any module $M$ with $\operatorname{Ext}^i(M,\Lambda)=0$ for $1 \le i \le n+1$ is projective. We also determine the structure of the artin algebras with radical square zero and $n$ simple modules which have a non-projective module $M$ such that $\operatorname{Ext}^i(M,\Lambda) = 0$ for $1 \le i \le n$.
Keywords: Artin algebras; left artinian rings; representations, modules; Gorenstein modules, CM modules; self-injective algebras; radical square zero algebras.
@article{ADM_2012_14_2_a11,
     author = {Claus Michael Ringel and B.-L. Xiong},
     title = {On radical square zero rings},
     journal = {Algebra and discrete mathematics},
     pages = {297--306},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/}
}
TY  - JOUR
AU  - Claus Michael Ringel
AU  - B.-L. Xiong
TI  - On radical square zero rings
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 297
EP  - 306
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/
LA  - en
ID  - ADM_2012_14_2_a11
ER  - 
%0 Journal Article
%A Claus Michael Ringel
%A B.-L. Xiong
%T On radical square zero rings
%J Algebra and discrete mathematics
%D 2012
%P 297-306
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/
%G en
%F ADM_2012_14_2_a11
Claus Michael Ringel; B.-L. Xiong. On radical square zero rings. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a11/