Combinatorics of irreducible Gelfand--Tsetlin $sl(3)$-modules
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 276-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present an explicit description of all irreducible $\mathfrak{sl}(3)$-modules which admit a Gelfand-Tsetlin tableaux realization with respect to the standard Gelfand-Tsetlin subalgebra.
Keywords: Gelfand–Tsetlin modules, weight modules, Gelfand–Tsetlin basis.
@article{ADM_2012_14_2_a10,
     author = {Luis Enrique Ramirez},
     title = {Combinatorics of irreducible {Gelfand--Tsetlin}  $sl(3)$-modules},
     journal = {Algebra and discrete mathematics},
     pages = {276--296},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/}
}
TY  - JOUR
AU  - Luis Enrique Ramirez
TI  - Combinatorics of irreducible Gelfand--Tsetlin  $sl(3)$-modules
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 276
EP  - 296
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/
LA  - en
ID  - ADM_2012_14_2_a10
ER  - 
%0 Journal Article
%A Luis Enrique Ramirez
%T Combinatorics of irreducible Gelfand--Tsetlin  $sl(3)$-modules
%J Algebra and discrete mathematics
%D 2012
%P 276-296
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/
%G en
%F ADM_2012_14_2_a10
Luis Enrique Ramirez. Combinatorics of irreducible Gelfand--Tsetlin  $sl(3)$-modules. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 276-296. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/

[1] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Irreducible Weighted $\mathfrak{sl}(3)$-Modules”, Funksionalnyi Analiz i Ego Prilozheniya, 23 (1989), 57–58 | DOI | MR

[2] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Gelfand–Tsetlin Modules Over Lie Algebra $\mathfrak{sl}(3)$”, Contemporary Mathematics, 131, 1992, 23–29 | DOI | MR

[3] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Harish–Chandra subalgebras and Gelfand–Zetlin modules”, Math. and Phys. Sci., 424 (1994), 72–89 | MR

[4] S. Fernando, “Lie Algebra Modules with finite dimensional weight spaces, I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | MR

[5] V. Futorny, “A Generalization of Verma Modules, and Irreducible Representations of the Lie Algebra $\mathfrak{sl}(3)$”, Ukrainskii Matematicheskii Zhurnal, 38:4 (July-August, 1986), 492–497 | MR

[6] V. Futorny, S. Ovsienko, M. Saorin, “Gelfand–Tsetlin categories”, Contemporary Mathematics, 537, American Mathematical Society, 2011, 193–203 | DOI | MR

[7] I. M. Gelfand, M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices”, Doklady Akad. Nauk SSSR (N.s.), 71 (1950), 825–828 | MR

[8] V. Mazorchuk, Lectures on $sl(2)$-modules, Imperial College Press, London, 2010 | MR

[9] V. Mazorchuk, “Tableaux Realization of Generalized Verma Modules”, Can. J. Math., 50:4 (1998), 816–828 | DOI | MR

[10] V. Mazorchuk, “On Categories Of Gelfand–Tsetlin Modules”, Noncommutative Structures in Mathematics and Physics, 2001, 299–307 | DOI | MR

[11] A. I. Molev, “Gelfand–Tsetlin Bases for Classical Lie Algebras”, Handbook of Algebra, v. 4, ed. M. Hazewinkel, Elsevier, 2006, 109–170 | DOI | MR