Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_14_2_a10, author = {Luis Enrique Ramirez}, title = {Combinatorics of irreducible {Gelfand--Tsetlin} $sl(3)$-modules}, journal = {Algebra and discrete mathematics}, pages = {276--296}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/} }
Luis Enrique Ramirez. Combinatorics of irreducible Gelfand--Tsetlin $sl(3)$-modules. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 276-296. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a10/
[1] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Irreducible Weighted $\mathfrak{sl}(3)$-Modules”, Funksionalnyi Analiz i Ego Prilozheniya, 23 (1989), 57–58 | DOI | MR
[2] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Gelfand–Tsetlin Modules Over Lie Algebra $\mathfrak{sl}(3)$”, Contemporary Mathematics, 131, 1992, 23–29 | DOI | MR
[3] Drozd Yu. A., Ovsienko S. A., Futorny V. M., “Harish–Chandra subalgebras and Gelfand–Zetlin modules”, Math. and Phys. Sci., 424 (1994), 72–89 | MR
[4] S. Fernando, “Lie Algebra Modules with finite dimensional weight spaces, I”, Trans. Amer. Math. Soc., 322 (1990), 757–781 | MR
[5] V. Futorny, “A Generalization of Verma Modules, and Irreducible Representations of the Lie Algebra $\mathfrak{sl}(3)$”, Ukrainskii Matematicheskii Zhurnal, 38:4 (July-August, 1986), 492–497 | MR
[6] V. Futorny, S. Ovsienko, M. Saorin, “Gelfand–Tsetlin categories”, Contemporary Mathematics, 537, American Mathematical Society, 2011, 193–203 | DOI | MR
[7] I. M. Gelfand, M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices”, Doklady Akad. Nauk SSSR (N.s.), 71 (1950), 825–828 | MR
[8] V. Mazorchuk, Lectures on $sl(2)$-modules, Imperial College Press, London, 2010 | MR
[9] V. Mazorchuk, “Tableaux Realization of Generalized Verma Modules”, Can. J. Math., 50:4 (1998), 816–828 | DOI | MR
[10] V. Mazorchuk, “On Categories Of Gelfand–Tsetlin Modules”, Noncommutative Structures in Mathematics and Physics, 2001, 299–307 | DOI | MR
[11] A. I. Molev, “Gelfand–Tsetlin Bases for Classical Lie Algebras”, Handbook of Algebra, v. 4, ed. M. Hazewinkel, Elsevier, 2006, 109–170 | DOI | MR