Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. A subgroup of $G$ is said to be $S$-quasinormal in $G$ if it permutes with every Sylow subgroup of $G$. We fix in every non-cyclic Sylow subgroup $P$ of the generalized Fitting subgroup a subgroup $D$ such that $1 |D| |P|$ and characterize $G$ under the assumption that all subgroups $H$ of $P$ with $|H| = |D|$ are $S$-quasinormal in $G$. Some recent results are generalized.
Keywords: $S$-quasinormality, generalized Fitting subgroup, supersolvability.
@article{ADM_2012_14_2_a1,
     author = {M. Asaad and Piroska Cs\"org\H{o}},
     title = {Characterization of finite groups with some $S$-quasinormal subgroups of fixed order},
     journal = {Algebra and discrete mathematics},
     pages = {161--167},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/}
}
TY  - JOUR
AU  - M. Asaad
AU  - Piroska Csörgő
TI  - Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 161
EP  - 167
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/
LA  - en
ID  - ADM_2012_14_2_a1
ER  - 
%0 Journal Article
%A M. Asaad
%A Piroska Csörgő
%T Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
%J Algebra and discrete mathematics
%D 2012
%P 161-167
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/
%G en
%F ADM_2012_14_2_a1
M. Asaad; Piroska Csörgő. Characterization of finite groups with some $S$-quasinormal subgroups of fixed order. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/