Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. A subgroup of $G$ is said to be $S$-quasinormal in $G$ if it permutes with every Sylow subgroup of $G$. We fix in every non-cyclic Sylow subgroup $P$ of the generalized Fitting subgroup a subgroup $D$ such that $1 |D| |P|$ and characterize $G$ under the assumption that all subgroups $H$ of $P$ with $|H| = |D|$ are $S$-quasinormal in $G$. Some recent results are generalized.
Keywords: $S$-quasinormality, generalized Fitting subgroup, supersolvability.
@article{ADM_2012_14_2_a1,
     author = {M. Asaad and Piroska Cs\"org\H{o}},
     title = {Characterization of finite groups with some $S$-quasinormal subgroups of fixed order},
     journal = {Algebra and discrete mathematics},
     pages = {161--167},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/}
}
TY  - JOUR
AU  - M. Asaad
AU  - Piroska Csörgő
TI  - Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 161
EP  - 167
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/
LA  - en
ID  - ADM_2012_14_2_a1
ER  - 
%0 Journal Article
%A M. Asaad
%A Piroska Csörgő
%T Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
%J Algebra and discrete mathematics
%D 2012
%P 161-167
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/
%G en
%F ADM_2012_14_2_a1
M. Asaad; Piroska Csörgő. Characterization of finite groups with some $S$-quasinormal subgroups of fixed order. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/

[1] M. Asaad, P. Csörgő, “The influence of minimal subgroups on the structure of finite groups”, Archiv der Mathematik, 72 (1999), 401–404 | DOI | MR | Zbl

[2] M. Asaad, P. Csörgő, “Characterization of Finite Groups with Some $S$-quasinormal Subgroups”, Monatsh. Math., 146 (2005), 263–266 | DOI | MR | Zbl

[3] M. Asaad, A. A. Heliel, “On $S$-quasinormally embedded subgroups of finite groups”, J. Pure and Applied Algebra, 165 (2001), 129–135 | DOI | MR | Zbl

[4] Junhong Yao, Changqun Wang, Yangming Li, “A note on characterization of finite groups with some $S$-quasinormal subgroups”, Monatsh. Math., 161 (2010), 233–236 | DOI | MR | Zbl

[5] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1979

[6] B. Huppert, N. Blackburn, Finite Groups, v. III, Springer-Verlag, Berlin, 1982

[7] O. H. Kegel, “Sylow Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[8] Y. Li, Y. Wang, “The influence of minimal subgroups on the structure of finite groups”, Proc. Amer. Math. Soc., 131 (2003), 337–341 | DOI | MR | Zbl

[9] P. Schmidt, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 267 (1998), 285–293 | DOI | MR

[10] A. N. Skiba, “On weakly $s$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[11] M. Weinstein (Ed.), Between Nilpotent and Solvable, Polygonal Publishing House, Passaic, 1982 | MR | Zbl