Characterization of finite groups with some $S$-quasinormal subgroups of fixed order
Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group. A subgroup of $G$ is said to be $S$-quasinormal in $G$ if it permutes with every Sylow subgroup of $G$. We fix in every non-cyclic Sylow subgroup $P$ of the generalized Fitting subgroup a subgroup $D$ such that $1 |D| |P|$ and characterize $G$ under the assumption that all subgroups $H$ of $P$ with $|H| = |D|$ are $S$-quasinormal in $G$. Some recent results are generalized.
Keywords:
$S$-quasinormality, generalized Fitting subgroup, supersolvability.
@article{ADM_2012_14_2_a1,
author = {M. Asaad and Piroska Cs\"org\H{o}},
title = {Characterization of finite groups with some $S$-quasinormal subgroups of fixed order},
journal = {Algebra and discrete mathematics},
pages = {161--167},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/}
}
TY - JOUR AU - M. Asaad AU - Piroska Csörgő TI - Characterization of finite groups with some $S$-quasinormal subgroups of fixed order JO - Algebra and discrete mathematics PY - 2012 SP - 161 EP - 167 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/ LA - en ID - ADM_2012_14_2_a1 ER -
M. Asaad; Piroska Csörgő. Characterization of finite groups with some $S$-quasinormal subgroups of fixed order. Algebra and discrete mathematics, Tome 14 (2012) no. 2, pp. 161-167. http://geodesic.mathdoc.fr/item/ADM_2012_14_2_a1/