Invariants of finite solvable groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131
Voir la notice de l'article provenant de la source Math-Net.Ru
The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent $\pi$-length of $\pi$-solvable groups. Open questions are formulated.
Keywords:
derived length, nilpotent lengths, $p$-length, $\pi$-length, nilpotent $\pi$-length, rank, $p$-rank, metacyclic group, bicyclic group
Mots-clés : $\pi$-solvable group.
Mots-clés : $\pi$-solvable group.
@article{ADM_2012_14_1_a8,
author = {Viktor Monakhov and Alexander Trofimuk},
title = {Invariants of finite solvable groups},
journal = {Algebra and discrete mathematics},
pages = {107--131},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/}
}
Viktor Monakhov; Alexander Trofimuk. Invariants of finite solvable groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/