Invariants of finite solvable groups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains the results about invariants of solvable groups with given structure of Sylow subgroups and information about the nilpotent $\pi$-length of $\pi$-solvable groups. Open questions are formulated.
Keywords: derived length, nilpotent lengths, $p$-length, $\pi$-length, nilpotent $\pi$-length, rank, $p$-rank, metacyclic group, bicyclic group
Mots-clés : $\pi$-solvable group.
@article{ADM_2012_14_1_a8,
     author = {Viktor Monakhov and Alexander Trofimuk},
     title = {Invariants of finite solvable groups},
     journal = {Algebra and discrete mathematics},
     pages = {107--131},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/}
}
TY  - JOUR
AU  - Viktor Monakhov
AU  - Alexander Trofimuk
TI  - Invariants of finite solvable groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 107
EP  - 131
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/
LA  - en
ID  - ADM_2012_14_1_a8
ER  - 
%0 Journal Article
%A Viktor Monakhov
%A Alexander Trofimuk
%T Invariants of finite solvable groups
%J Algebra and discrete mathematics
%D 2012
%P 107-131
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/
%G en
%F ADM_2012_14_1_a8
Viktor Monakhov; Alexander Trofimuk. Invariants of finite solvable groups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 107-131. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a8/