Groups with many pronormal and transitively normal subgroups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is said to be transitively normal in $G$, if $H$ is normal in every subgroup $K\geqslant H$ such that $H$ is subnormal in $K$. We described some infinite groups, whose non–finitely generated subgroups are transitively normal.
Keywords: radical group, locally nilpotent group, transitively normal subgroup, non finitely generated subgroup.
Mots-clés : soluble group
@article{ADM_2012_14_1_a7,
     author = {L. A. Kurdachenko and N. N. Semko (Jr.) and I. Ya. Subbotin},
     title = {Groups with many pronormal and transitively normal subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {84--106},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - N. N. Semko (Jr.)
AU  - I. Ya. Subbotin
TI  - Groups with many pronormal and transitively normal subgroups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 84
EP  - 106
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/
LA  - en
ID  - ADM_2012_14_1_a7
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A N. N. Semko (Jr.)
%A I. Ya. Subbotin
%T Groups with many pronormal and transitively normal subgroups
%J Algebra and discrete mathematics
%D 2012
%P 84-106
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/
%G en
%F ADM_2012_14_1_a7
L. A. Kurdachenko; N. N. Semko (Jr.); I. Ya. Subbotin. Groups with many pronormal and transitively normal subgroups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/