Groups with many pronormal and transitively normal subgroups
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106
Voir la notice de l'article provenant de la source Math-Net.Ru
A subgroup $H$ of a group $G$ is said to be transitively normal in $G$, if $H$ is normal in every subgroup $K\geqslant H$ such that $H$ is subnormal in $K$. We described some infinite groups, whose non–finitely generated subgroups are transitively normal.
Keywords:
radical group, locally nilpotent group, transitively normal subgroup, non finitely generated subgroup.
Mots-clés : soluble group
Mots-clés : soluble group
@article{ADM_2012_14_1_a7,
author = {L. A. Kurdachenko and N. N. Semko (Jr.) and I. Ya. Subbotin},
title = {Groups with many pronormal and transitively normal subgroups},
journal = {Algebra and discrete mathematics},
pages = {84--106},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/}
}
TY - JOUR AU - L. A. Kurdachenko AU - N. N. Semko (Jr.) AU - I. Ya. Subbotin TI - Groups with many pronormal and transitively normal subgroups JO - Algebra and discrete mathematics PY - 2012 SP - 84 EP - 106 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/ LA - en ID - ADM_2012_14_1_a7 ER -
L. A. Kurdachenko; N. N. Semko (Jr.); I. Ya. Subbotin. Groups with many pronormal and transitively normal subgroups. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 84-106. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a7/