The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type and offer two conjectures (for such modules) in the general case, one of which suggests that any non-wild group is of finite representation type in each dimension.
Keywords: elementary abelian groups, matrix representations, representation type
Mots-clés : constant Jordan type.
@article{ADM_2012_14_1_a3,
     author = {Vitalij M. Bondarenko and Iryna V. Lytvynchuk},
     title = {The representation type of elementary abelian $p$-groups with respect to the modules of constant {Jordan} type},
     journal = {Algebra and discrete mathematics},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a3/}
}
TY  - JOUR
AU  - Vitalij M. Bondarenko
AU  - Iryna V. Lytvynchuk
TI  - The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 29
EP  - 36
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a3/
LA  - en
ID  - ADM_2012_14_1_a3
ER  - 
%0 Journal Article
%A Vitalij M. Bondarenko
%A Iryna V. Lytvynchuk
%T The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type
%J Algebra and discrete mathematics
%D 2012
%P 29-36
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a3/
%G en
%F ADM_2012_14_1_a3
Vitalij M. Bondarenko; Iryna V. Lytvynchuk. The representation type of elementary abelian $p$-groups with respect to the modules of constant Jordan type. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a3/