Local embeddability
Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 14-28

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary class of algebraic structures we consider a notion of a structure locally embeddable to structures of the class. This generalizes the notion of a group locally embeddable to finite groups studied by Vershik and Gordon. We give various model-theoretic characterizations of such structures. Some of them generalize known group-theoretic results.
Keywords: local embeddability, universal theory
Mots-clés : ultraproduct, limit structure.
@article{ADM_2012_14_1_a2,
     author = {Oleg Belegradek},
     title = {Local embeddability},
     journal = {Algebra and discrete mathematics},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a2/}
}
TY  - JOUR
AU  - Oleg Belegradek
TI  - Local embeddability
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 14
EP  - 28
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a2/
LA  - en
ID  - ADM_2012_14_1_a2
ER  - 
%0 Journal Article
%A Oleg Belegradek
%T Local embeddability
%J Algebra and discrete mathematics
%D 2012
%P 14-28
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a2/
%G en
%F ADM_2012_14_1_a2
Oleg Belegradek. Local embeddability. Algebra and discrete mathematics, Tome 14 (2012) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/ADM_2012_14_1_a2/