On factorizations of limited solubly $\omega$-saturated formations
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 289-298

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\frak{F}=\frak{F}_1\ldots\frak{F}_t$ is the product of the formations $\frak{F}_1,\ldots,\frak{F}_t$ and $\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t$ for all $i=1,\ldots,t$, then we call this product a non-cancellative factorization of the formation $\frak{F}$. In this paper we gives a description of factorizable limited solubly $\omega$-saturated formations.
Keywords: factorizations, solubly $\omega$-saturated formation, one-generated formation.
Mots-clés : composition $\omega$-satelitte
@article{ADM_2012_13_2_a8,
     author = {Vadim M. Selkin},
     title = {On factorizations of limited solubly $\omega$-saturated formations},
     journal = {Algebra and discrete mathematics},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/}
}
TY  - JOUR
AU  - Vadim M. Selkin
TI  - On factorizations of limited solubly $\omega$-saturated formations
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 289
EP  - 298
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/
LA  - en
ID  - ADM_2012_13_2_a8
ER  - 
%0 Journal Article
%A Vadim M. Selkin
%T On factorizations of limited solubly $\omega$-saturated formations
%J Algebra and discrete mathematics
%D 2012
%P 289-298
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/
%G en
%F ADM_2012_13_2_a8
Vadim M. Selkin. On factorizations of limited solubly $\omega$-saturated formations. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 289-298. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/