On factorizations of limited solubly $\omega$-saturated formations
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 289-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $\frak{F}=\frak{F}_1\ldots\frak{F}_t$ is the product of the formations $\frak{F}_1,\ldots,\frak{F}_t$ and $\frak{F}\ne\frak{F}_1\ldots\frak{F}_{i-1}\frak{F}_{i+1}\ldots\frak{F}_t$ for all $i=1,\ldots,t$, then we call this product a non-cancellative factorization of the formation $\frak{F}$. In this paper we gives a description of factorizable limited solubly $\omega$-saturated formations.
Keywords: factorizations, solubly $\omega$-saturated formation, one-generated formation.
Mots-clés : composition $\omega$-satelitte
@article{ADM_2012_13_2_a8,
     author = {Vadim M. Selkin},
     title = {On factorizations of limited solubly $\omega$-saturated formations},
     journal = {Algebra and discrete mathematics},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/}
}
TY  - JOUR
AU  - Vadim M. Selkin
TI  - On factorizations of limited solubly $\omega$-saturated formations
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 289
EP  - 298
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/
LA  - en
ID  - ADM_2012_13_2_a8
ER  - 
%0 Journal Article
%A Vadim M. Selkin
%T On factorizations of limited solubly $\omega$-saturated formations
%J Algebra and discrete mathematics
%D 2012
%P 289-298
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/
%G en
%F ADM_2012_13_2_a8
Vadim M. Selkin. On factorizations of limited solubly $\omega$-saturated formations. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 289-298. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a8/

[1] K. Doerk, T. Hawkes, Finite Soluble Group, Walter de Gruyter, Berlin–New York, 1992 | MR

[2] A. N. Skiba, L. A. Shemetkov, “Multiply $\frak{L}$-composition formations of finite groups”, Ukrainsk. Math. Zh., 52:6 (2000), 783–797 | MR | Zbl

[3] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl

[4] L. A. Shemetkov, A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989 | MR

[5] A. N. Skiba, Algebra of Formations, Belaruskaja Navuka, Minsk, 1997 | MR | Zbl

[6] V. M. Selkin, “Criterions of a limitation of solubly $\omega$-saturaed formations of finite groups”, Vesti NAN Belarusi, 2 (2012), 131–136

[7] W. Go, V. M. Selkin, K. P. Sham, “Factorization theory of one-generated Bear $\omega$-local formations”, Communications in Algebra, 35:9, September (2007), 2901–2931 | DOI | MR

[8] A. N. Skiba, “On product of formations”, Algebra and Logic, 22:5 (1983), 574–583 | DOI | MR | Zbl

[9] V. M. Selkin, “About one application of the theory of minimal $\tau$-closed $\omega$-saturated non $\frak{H}$-formations”, Vestnik VSU, 3 (2012), 46–52

[10] V. M. Selkin, “On one criterion of product of nonidentity formations”, Proc. GGU, 2 (2012), 23–27

[11] Wenbin Guo, The Theory of Classes of Groups, Science Press-Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000 | MR