Algebra in superextensions of inverse semigroups
Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 147-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find necessary and sufficient conditions on an (inverse) semigroup $X$ under which its semigroups of maximal linked systems $\lambda(X)$, filters $\varphi(X)$, linked upfamilies $N_2(X)$, and upfamilies $\upsilon(X)$ are inverse.
Keywords: inverse semigroup, regular semigroup, Clifford semigroup, superextension, semigroup of filters.
@article{ADM_2012_13_2_a2,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Algebra in superextensions of inverse semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {147--168},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a2/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Algebra in superextensions of inverse semigroups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 147
EP  - 168
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a2/
LA  - en
ID  - ADM_2012_13_2_a2
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Algebra in superextensions of inverse semigroups
%J Algebra and discrete mathematics
%D 2012
%P 147-168
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a2/
%G en
%F ADM_2012_13_2_a2
Taras Banakh; Volodymyr Gavrylkiv. Algebra in superextensions of inverse semigroups. Algebra and discrete mathematics, Tome 13 (2012) no. 2, pp. 147-168. http://geodesic.mathdoc.fr/item/ADM_2012_13_2_a2/

[1] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups. II: Cancelativity and centers”, Algebra Discr. Math., 2008, no. 4, 1–14 | MR | Zbl

[2] T. Banakh, V. Gavrylkiv, “Algebra in superextension of groups: minimal left ideals”, Mat. Stud., 31 (2009), 142–148 | MR | Zbl

[3] T. Banakh, V. Gavrylkiv, “Algebra in the superextensions of twinic groups”, Dissert. Math., 473 (2010), 74 pp. | MR | Zbl

[4] T. Banakh, V. Gavrylkiv, “Algebra in superextensions of semilattices”, Algebra Discr. Math., 13:1 (2012), 26–42 | MR | Zbl

[5] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, “Algebra in superextensions of groups. I: Zeros and commutativity”, Algebra Discr. Math., 2008, no. 3, 1–29 | MR | Zbl

[6] A. H. Clifford, G. B. Preston, The algebraic thery of semigroups, v. II, Mathematical Surveys, 7, AMS, Providence, RI, 1967 | MR

[7] R. Ellis, “Distal transformation groups”, Pacific J. Math., 8 (1958), 401–405 | DOI | MR | Zbl

[8] V. Gavrylkiv, “The spaces of inclusion hyperspaces over noncompact spaces”, Mat. Stud., 28:1 (2007), 92–110 | MR | Zbl

[9] V. Gavrylkiv, “Right-topological semigroup operations on inclusion hyperspaces”, Mat. Stud., 29:1 (2008), 18–34 | MR | Zbl

[10] R. Graham, B. Rothschild, J. Spencer, Ramsey theory, John Wiley Sons, Inc., New York, 1990 | MR | Zbl

[11] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, de Gruyter, Berlin–New York, 1998 | MR | Zbl

[12] J. van Mill, Supercompactness and Wallman spaces, Math. Centre Tracts, 85, Math. Centrum, Amsterdam, 1977 | MR

[13] M. Petrich, Inverse semigroups, John Wiley Sons, Inc., New York, 1984 | MR | Zbl

[14] F. Ramsey, “On a problem of formal logic”, Proc. London Math. Soc., 30 (1930), 264–286 | DOI | MR

[15] A. Verbeek, Superextensions of topological spaces, MC Tract, 41, Amsterdam, 1972 | MR | Zbl