Algebra in superextensions of semilattices
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 26-42

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a semilattice $X$ we study the algebraic properties of the semigroup $\upsilon(X)$ of upfamilies on $X$. The semigroup $\upsilon(X)$ contains the Stone–Čech extension $\beta(X)$, the superextension $\lambda(X)$, and the space of filters $\varphi(X)$ on $X$ as closed subsemigroups. We prove that $\upsilon(X)$ is a semilattice iff $\lambda(X)$ is a semilattice iff $\varphi(X)$ is a semilattice iff the semilattice $X$ is finite and linearly ordered. We prove that the semigroup $\beta(X)$ is a band if and only if $X$ has no infinite antichains, and the semigroup $\lambda(X)$ is commutative if and only if $X$ is a bush with finite branches.
Keywords: semilattice, band, commutative semigroup, the space of upfamilies, the space of filters, the space of maximal linked systems, superextension.
@article{ADM_2012_13_1_a3,
     author = {Taras Banakh and Volodymyr Gavrylkiv},
     title = {Algebra in superextensions of semilattices},
     journal = {Algebra and discrete mathematics},
     pages = {26--42},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a3/}
}
TY  - JOUR
AU  - Taras Banakh
AU  - Volodymyr Gavrylkiv
TI  - Algebra in superextensions of semilattices
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 26
EP  - 42
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a3/
LA  - en
ID  - ADM_2012_13_1_a3
ER  - 
%0 Journal Article
%A Taras Banakh
%A Volodymyr Gavrylkiv
%T Algebra in superextensions of semilattices
%J Algebra and discrete mathematics
%D 2012
%P 26-42
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a3/
%G en
%F ADM_2012_13_1_a3
Taras Banakh; Volodymyr Gavrylkiv. Algebra in superextensions of semilattices. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 26-42. http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a3/