On $S$-quasinormally embedded subgroups of~finite groups
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 18-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. A subgroup $A$ is called: 1) $S$-quasinormal in $G$ if $A$ is permutable with all Sylow subgroups in $G$ 2) $S$-quasinormally embedded in $G$ if every Sylow subgroup of $A$ is a Sylow subgroup of some $S$-quasinormal subgroup of $G$. Let $B_{seG}$ be the subgroup generated by all the subgroups of $B$ which are $S$-quasinormally embedded in $G$. A subgroup $B$ is called $SE$-supplemented in $G$ if there exists a subgroup $T$ such that $G=BT$ and $B\cap T\le B_{seG}$. The main result of the paper is the following. Theorem. Let $H$ be a normal subgroup in $G$, and $p$ a prime divisor of $|H|$ such that $(p-1,|H|)=1$. Let $P$ be a Sylow $p$-subgroup in $H$. Assume that all maximal subgroups in $P$ are $SE$-supplemented in $G$. Then $H$ is $p$-nilpotent and all its $G$-chief $p$-factors are cyclic.
Keywords: Finite group, $p$-nilpotent, $S$-quasinormal subgroup.
@article{ADM_2012_13_1_a2,
     author = {Kh. A. Al-Sharo and Olga Shemetkova and Xiaolan Yi},
     title = {On $S$-quasinormally embedded subgroups of~finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/}
}
TY  - JOUR
AU  - Kh. A. Al-Sharo
AU  - Olga Shemetkova
AU  - Xiaolan Yi
TI  - On $S$-quasinormally embedded subgroups of~finite groups
JO  - Algebra and discrete mathematics
PY  - 2012
SP  - 18
EP  - 25
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/
LA  - en
ID  - ADM_2012_13_1_a2
ER  - 
%0 Journal Article
%A Kh. A. Al-Sharo
%A Olga Shemetkova
%A Xiaolan Yi
%T On $S$-quasinormally embedded subgroups of~finite groups
%J Algebra and discrete mathematics
%D 2012
%P 18-25
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/
%G en
%F ADM_2012_13_1_a2
Kh. A. Al-Sharo; Olga Shemetkova; Xiaolan Yi. On $S$-quasinormally embedded subgroups of~finite groups. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/

[1] O. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl

[2] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl

[3] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “Sufficient conditions for supersolvability of finite groups”, J. Pure Appl. Algebra, 127 (1998), 113–118 | DOI | MR | Zbl

[4] M. Asaad, “On maximal subgroups of finite groups”, Comm. Algebra, 26 (1998), 3647–3652 | DOI | MR | Zbl

[5] M. Asaad, P. Csörgő, “Influence of minimal subgroups on the structure of finite groups”, Arch. Math. (Basel), 72 (1999), 401–404 | DOI | MR | Zbl

[6] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math. (Basel), 72 (1999), 161–166 | DOI | MR | Zbl

[7] Y. Li, Y. Wang, “The influence of minimal subgroups on the structure of a finite group”, Proc. Amer. Math. Soc., 131 (2002), 337–341 | MR

[8] Y. Li, Y. Wang, “The influence of $\pi$-quasinormality of some subgroups of a finite group”, Arch. Math. (Basel), 81 (2003), 245–252 | DOI | MR | Zbl

[9] Y. Li, Y. Wang, “On $\pi$-quasinormally embedded subgroups of finite groups”, J. Algebra, 281 (2004), 109–123 | DOI | MR | Zbl

[10] Kh. A. Al-Sharo, Olga Shemetkova, “An application of the concept of a generalized central element”, Algebra discrete Math., 2007, no. 4, 1–10 | MR | Zbl

[11] A. N. Skiba, “On weakly $S$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[12] L. A. Shemetkov, A. N. Skiba, “On the $\mathcal{X}\Phi$-hypercentre of finite groups”, J. Algebra, 322 (2009), 2106–2117 | DOI | MR | Zbl

[13] A. N. Skiba, “On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups”, J. Group Theory, 13 (2010), 841–850 | DOI | MR | Zbl

[14] A. N. Skiba, “On the $SE$-core of subgroups of a finite group”, Problems of Physics, Mathematics and Technics, 4:5 (2010), 39–45 | Zbl

[15] P. Schmid, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 82 (1998), 285–293 | DOI | MR

[16] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[17] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978 | MR | Zbl

[18] O. L. Shemetkova, “On finite groups with $Q$-central elements of prime order”, Proc. of the Institute of Mathematics, 16:1 (2008), 97–99

[19] F. Gross, “Conjugacy of odd Hall subgroups”, Bull. London Math. Soc., 19 (1987), 311–319 | DOI | MR | Zbl

[20] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl