Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2012_13_1_a2, author = {Kh. A. Al-Sharo and Olga Shemetkova and Xiaolan Yi}, title = {On $S$-quasinormally embedded subgroups of~finite groups}, journal = {Algebra and discrete mathematics}, pages = {18--25}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/} }
TY - JOUR AU - Kh. A. Al-Sharo AU - Olga Shemetkova AU - Xiaolan Yi TI - On $S$-quasinormally embedded subgroups of~finite groups JO - Algebra and discrete mathematics PY - 2012 SP - 18 EP - 25 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/ LA - en ID - ADM_2012_13_1_a2 ER -
Kh. A. Al-Sharo; Olga Shemetkova; Xiaolan Yi. On $S$-quasinormally embedded subgroups of~finite groups. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a2/
[1] O. Kegel, “Sylow-Gruppen and Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | MR | Zbl
[2] W. E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | MR | Zbl
[3] A. Ballester-Bolinches, M. C. Pedraza-Aguilera, “Sufficient conditions for supersolvability of finite groups”, J. Pure Appl. Algebra, 127 (1998), 113–118 | DOI | MR | Zbl
[4] M. Asaad, “On maximal subgroups of finite groups”, Comm. Algebra, 26 (1998), 3647–3652 | DOI | MR | Zbl
[5] M. Asaad, P. Csörgő, “Influence of minimal subgroups on the structure of finite groups”, Arch. Math. (Basel), 72 (1999), 401–404 | DOI | MR | Zbl
[6] A. Ballester-Bolinches, X. Y. Guo, “On complemented subgroups of finite groups”, Arch. Math. (Basel), 72 (1999), 161–166 | DOI | MR | Zbl
[7] Y. Li, Y. Wang, “The influence of minimal subgroups on the structure of a finite group”, Proc. Amer. Math. Soc., 131 (2002), 337–341 | MR
[8] Y. Li, Y. Wang, “The influence of $\pi$-quasinormality of some subgroups of a finite group”, Arch. Math. (Basel), 81 (2003), 245–252 | DOI | MR | Zbl
[9] Y. Li, Y. Wang, “On $\pi$-quasinormally embedded subgroups of finite groups”, J. Algebra, 281 (2004), 109–123 | DOI | MR | Zbl
[10] Kh. A. Al-Sharo, Olga Shemetkova, “An application of the concept of a generalized central element”, Algebra discrete Math., 2007, no. 4, 1–10 | MR | Zbl
[11] A. N. Skiba, “On weakly $S$-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl
[12] L. A. Shemetkov, A. N. Skiba, “On the $\mathcal{X}\Phi$-hypercentre of finite groups”, J. Algebra, 322 (2009), 2106–2117 | DOI | MR | Zbl
[13] A. N. Skiba, “On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups”, J. Group Theory, 13 (2010), 841–850 | DOI | MR | Zbl
[14] A. N. Skiba, “On the $SE$-core of subgroups of a finite group”, Problems of Physics, Mathematics and Technics, 4:5 (2010), 39–45 | Zbl
[15] P. Schmid, “Subgroups permutable with all Sylow subgroups”, J. Algebra, 82 (1998), 285–293 | DOI | MR
[16] Doerk K., Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[17] L. A. Shemetkov, Formations of finite groups, Nauka, Moscow, 1978 | MR | Zbl
[18] O. L. Shemetkova, “On finite groups with $Q$-central elements of prime order”, Proc. of the Institute of Mathematics, 16:1 (2008), 97–99
[19] F. Gross, “Conjugacy of odd Hall subgroups”, Bull. London Math. Soc., 19 (1987), 311–319 | DOI | MR | Zbl
[20] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl