Some (Hopf) algebraic properties of circulant matrices
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 1-17
Cet article a éte moissonné depuis la source Math-Net.Ru
We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant $n\times n$ matrices is isomorphic to the group algebra of the cyclic group with $n$ elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries.
Keywords:
Hopf algebras; (generalized) circulant matrices; Brandt algebras.
@article{ADM_2012_13_1_a1,
author = {Helen Albuquerque and Florin Panaite},
title = {Some {(Hopf)} algebraic properties of circulant matrices},
journal = {Algebra and discrete mathematics},
pages = {1--17},
year = {2012},
volume = {13},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a1/}
}
Helen Albuquerque; Florin Panaite. Some (Hopf) algebraic properties of circulant matrices. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a1/
[1] H. Albuquerque, R. S. Krausshar, “Multiplicative invariant lattices in ${\mathbb R}^n$ obtained by twisting of group algebras and some explicit characterizations”, J. Algebra, 319 (2008), 1116–1131 | DOI | MR | Zbl
[2] A. Cap, H. Schichl, J. Vanžura, “On twisted tensor products of algebras”, Comm. Algebra, 23 (1995), 4701–4735 | DOI | MR | Zbl
[3] P. J. Davis, Circulant Matrices, John Wiley, New York, 1977 | MR
[4] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Series, 82, Providence, RI, 1993 | MR
[5] J. C. Waterhouse, “The structure of monomial circulant matrices”, SIAM J. Alg. Disc. Meth., 8 (1987), 467–482 | DOI | MR | Zbl