Some (Hopf) algebraic properties of circulant matrices
Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We study some (Hopf) algebraic properties of circulant matrices, inspired by the fact that the algebra of circulant $n\times n$ matrices is isomorphic to the group algebra of the cyclic group with $n$ elements. We introduce also a class of matrices that generalize both circulant and skew circulant matrices, and for which the eigenvalues and eigenvectors can be read directly from their entries.
Keywords:
Hopf algebras; (generalized) circulant matrices; Brandt algebras.
@article{ADM_2012_13_1_a1,
author = {Helen Albuquerque and Florin Panaite},
title = {Some {(Hopf)} algebraic properties of circulant matrices},
journal = {Algebra and discrete mathematics},
pages = {1--17},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a1/}
}
Helen Albuquerque; Florin Panaite. Some (Hopf) algebraic properties of circulant matrices. Algebra and discrete mathematics, Tome 13 (2012) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2012_13_1_a1/