Mots-clés : quasi multiplicative basis.
@article{ADM_2011_12_2_a0,
author = {Vyacheslav Babych and Nataliya Golovashchuk and Sergiy Ovsienko},
title = {Generalized multiplicative bases for one-sided bimodule problems},
journal = {Algebra and discrete mathematics},
pages = {1--24},
year = {2011},
volume = {12},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a0/}
}
TY - JOUR AU - Vyacheslav Babych AU - Nataliya Golovashchuk AU - Sergiy Ovsienko TI - Generalized multiplicative bases for one-sided bimodule problems JO - Algebra and discrete mathematics PY - 2011 SP - 1 EP - 24 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a0/ LA - en ID - ADM_2011_12_2_a0 ER -
Vyacheslav Babych; Nataliya Golovashchuk; Sergiy Ovsienko. Generalized multiplicative bases for one-sided bimodule problems. Algebra and discrete mathematics, Tome 12 (2011) no. 2, pp. 1-24. http://geodesic.mathdoc.fr/item/ADM_2011_12_2_a0/
[1] V. M. Babych, N. S. Golovashchuk, “An Application of Covering Techniques”, Scientific Bulletin of Uzhgorod Univ. Series Mathematics and Informatics, 8 (2003), 4–14 | MR | Zbl
[2] V. M. Babych, N. S. Golovashchuk, S. A. Ovsienko, “Quasi multiplicative bases for bimodule problems from some class”, Scientific Bulletin of Uzhgorod Univ. Series Mathematics and Informatics, 22 (2011), 12–17 | Zbl
[3] R. Bautista, “On algebras of strongly unbounded representation type”, Comment. Math. Helv., 60:3 (1985), 392–399 | DOI | MR | Zbl
[4] R. Bautista, P. Gabriel, A. V. Roiter, L. Salmeron, “Representation-finite algebras and multiplicative basis”, Invent. Math., 81 (1985), 217–285 | DOI | MR | Zbl
[5] K. Bongartz, “Critical simply connected algebras”, Manuscr. Math., 46 (1984), 117–136 | DOI | MR | Zbl
[6] Yu. A. Drozd, “On tame and wild matrix problems”, Matrix Problems, Kiev, 1977, 104–114 | MR | Zbl
[7] P. Gabriel, A. Roiter, Representations of Finite Dimensional Algebras, Algebra, VIII, eds. A. I. Kostrikin, I. R. Shafarevich, Springer, 1991 | MR
[8] S. A. Ovsienko, “Bimodule and matrix problems”, Progress in Mathematics, 173 (1999), 323–357 | MR | Zbl