Characterization of finite simple semigroup digraphs
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 53-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper characterizes directed graphs which are Cayley graphs of finite simple semigroups, i.e. of a subspecies of completely regular semigroups. Moreover we investigate the structure of Cayley graphs of finite simple semigroups with a one-element connection set. We introduce the conditions for which they are isomorphic and connected.
Keywords: Cayley graph, digraph, completely regular, completely simple semigroups, Rees matrix semigroup.
@article{ADM_2011_12_1_a3,
     author = {J. Meksawang and S. Panma and U. Knauer},
     title = {Characterization of finite simple semigroup digraphs},
     journal = {Algebra and discrete mathematics},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a3/}
}
TY  - JOUR
AU  - J. Meksawang
AU  - S. Panma
AU  - U. Knauer
TI  - Characterization of finite simple semigroup digraphs
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 53
EP  - 68
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a3/
LA  - en
ID  - ADM_2011_12_1_a3
ER  - 
%0 Journal Article
%A J. Meksawang
%A S. Panma
%A U. Knauer
%T Characterization of finite simple semigroup digraphs
%J Algebra and discrete mathematics
%D 2011
%P 53-68
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a3/
%G en
%F ADM_2011_12_1_a3
J. Meksawang; S. Panma; U. Knauer. Characterization of finite simple semigroup digraphs. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 53-68. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a3/

[1] Sr. Arworn, U. Knauer, N. Na Chiangmai, “Characterization of Digraphs of Right (Left) Zero Unions of Groups”, Thai Journal of Mathematics, 1 (2003), 131–140 | MR | Zbl

[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[3] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall, London, 1996 | MR | Zbl

[4] M.-C. Heydemann, “Cayley graphs and interconnection networks”, Graph Symmetry, eds. G. Hahn, G. Sabidussi, Kluwer, 1997, 167–224 | DOI | MR | Zbl

[5] A. V. Kelarev,, “On Undirected Cayley Graphs”, Australasian Journal of Combinatorics, 25 (2002), 73–78 | MR | Zbl

[6] A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003 | MR | Zbl

[7] A. V. Kelarev, “Labelled Cayley Graphs and Minimal Automata”, Australasian Journal of Combinatorics, 30 (2004), 95–101 | MR | Zbl

[8] A. V. Kelarev, C. E. Praeger, “On Transitive Cayley Graphs of Groups and Semigroups”, European Journal of Combinatorics, 24 (2003), 59–72 | DOI | MR | Zbl

[9] A. V. Kelarev, S. J. Quinn, “A Combinatorial Property and Cayley Graphs of Semigroups”, Semigroup Forum, 66 (2003), 89–96 | DOI | MR | Zbl

[10] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Acts and Categories, W. de Gruyter, Berlin, 2000 | MR | Zbl

[11] S. Panma, U. Knauer, Sr. Arworn, “On Transitive Cayley Graphs of Right (Left) Groups and of Clifford Semigroups”, Thai Journal of Mathematics, 2 (2004), 183–195 | Zbl

[12] S. Panma, U. Knauer, N. Na Chiangmai, Sr. Arworn, “Characterization of Clifford Semigroup Digraphs”, Discrete Mathematics, 306 (2006), 1247–1252 | DOI | MR | Zbl

[13] M. Petrich, N. Reilly, Completely Regular Semigroups, J. Wiley, New York, 1999 | MR | Zbl

[14] C. E. Praeger, “Finite transitive permutation groups and finite vertex-transitive graphs”, Graph Symmetry, eds. G. Hahn, G. Sabidussi, Kluwer, 1997, 277–318 | DOI | MR | Zbl

[15] G. Sabidussi, “On a Class of fixed-point-free Graphs”, Proc. Amer. Math. Soc., 9 (1958), 800–804 | DOI | MR | Zbl

[16] A. T. White, Graphs, Groups and Surfaces, Elsevier, Amsterdam, 2001 | MR | Zbl