Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 28-52
Voir la notice de l'article provenant de la source Math-Net.Ru
For the affine Lie algebra $\widehat{sl}(n,\mathbb C)$ we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B. Cox [C1].
@article{ADM_2011_12_1_a2,
author = {Renato A. Martins},
title = {Free field realizations of certain modules for affine {Lie} algebra $\widehat{sl}(n,\mathbb C)$},
journal = {Algebra and discrete mathematics},
pages = {28--52},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/}
}
TY - JOUR
AU - Renato A. Martins
TI - Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$
JO - Algebra and discrete mathematics
PY - 2011
SP - 28
EP - 52
VL - 12
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/
LA - en
ID - ADM_2011_12_1_a2
ER -
Renato A. Martins. Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 28-52. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/