Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 28-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the affine Lie algebra $\widehat{sl}(n,\mathbb C)$ we study a realization in terms of infinite sums of partial differential operators of a family of representations introduced in [BBFK]. These representations generalize a construction of Imaginary Verma modules [F1]. The realization constructed in the paper extends the free field realization of Imaginary Verma modules constructed by B. Cox [C1].
@article{ADM_2011_12_1_a2,
     author = {Renato A. Martins},
     title = {Free field realizations of certain modules for affine {Lie} algebra $\widehat{sl}(n,\mathbb C)$},
     journal = {Algebra and discrete mathematics},
     pages = {28--52},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/}
}
TY  - JOUR
AU  - Renato A. Martins
TI  - Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 28
EP  - 52
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/
LA  - en
ID  - ADM_2011_12_1_a2
ER  - 
%0 Journal Article
%A Renato A. Martins
%T Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$
%J Algebra and discrete mathematics
%D 2011
%P 28-52
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/
%G en
%F ADM_2011_12_1_a2
Renato A. Martins. Free field realizations of certain modules for affine Lie algebra $\widehat{sl}(n,\mathbb C)$. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 28-52. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a2/

[BBFK] Bekkert, V., Benkart, G., Futorny, V., Kashuba, I., New Irreducible modules for Heisenberg and Affine Lie Algebras, preprint, 2010 | MR

[C1] Cox, B., “Fock Space Realizations of Imaginary Verma Modules”, Algebras and Representation Theory, 8 (2005), 173–206 | DOI | MR | Zbl

[C2] B. Cox, “Verma modules induced from nonstandard Borel subalgebras”, Pacific J. Math., 165 (1994), 269–294 | DOI | MR | Zbl

[CF] Cox, B., Futorny V., “Intermediate Wakimoto modules for affine $sl(n+1)$”, Journal of Physics. A, Mathematical and General,, 37:21 (2004), 5589–5603 | DOI | MR | Zbl

[DFG] I. Dimitrov, V. Futorny, and D. Grantcharov, “Parabolic sets of roots”, Groups, Rings and Group Rings, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009, 61–73 | DOI | MR | Zbl

[F1] Futorny, V.M., “Imaginary Verma modules for affine Lie algebra”, Canad. Math. Bull., 37:2 (1994), 213–218 | DOI | MR | Zbl

[F2] V. Futorny, “The parabolic subsets of root systems and corresponding representations of affine Lie algebras”, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 45–52 | DOI | MR

[F3] V. Futorny, “Irreducible non-dense $A_1^{(1)}$-modules”, Pacific J. Math., 172 (1996), 83–99 | MR | Zbl

[F4] V. Futorny, Representations of Affine Lie Algebras, Queen's Papers in Pure and Applied Math., 106, Queen's University, Kingston, ON, 1997 | MR | Zbl

[FS] V. Futorny and H. Saifi, “Modules of Verma type and new irreducible representations for affine Lie algebras”, Representations of algebras (Ottawa, ON, 1992), CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993, 185–191 | MR | Zbl

[FK] V. Futorny and I.Kashuba, “Induced modules for Kac-Moody Lie algebras”, SIGMA - Symmetry, Integrability and Geometry: Methods and Applications, 5 (2009), 026 | MR | Zbl

[JK] H.P. Jakobsen and V. Kac, “A new class of unitarizable highest weight representations of infinite dimensional Lie algebras”, Nonlinear equations in classical and quantum field theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 1–20 | DOI | MR