Derivations and relation modules for inverse semigroups
Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 1-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the derivation module for a homomorphism of inverse semigroups, generalizing a construction for groups due to Crowell. For a presentation map from a free inverse semigroup, we can then define its relation module as the kernel of a canonical map from the derivation module to the augmentation module. The constructions are analogues of the first steps in the Gruenberg resolution obtained from a group presentation. We give a new proof of the characterization of inverse monoids of cohomological dimension zero, and find a class of examples of inverse semigroups of cohomological dimension one.
Keywords: inverse semigroup, cohomology, derivation
Mots-clés : relation module.
@article{ADM_2011_12_1_a0,
     author = {N. D. Gilbert},
     title = {Derivations and relation modules for inverse semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {1--19},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a0/}
}
TY  - JOUR
AU  - N. D. Gilbert
TI  - Derivations and relation modules for inverse semigroups
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 1
EP  - 19
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a0/
LA  - en
ID  - ADM_2011_12_1_a0
ER  - 
%0 Journal Article
%A N. D. Gilbert
%T Derivations and relation modules for inverse semigroups
%J Algebra and discrete mathematics
%D 2011
%P 1-19
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a0/
%G en
%F ADM_2011_12_1_a0
N. D. Gilbert. Derivations and relation modules for inverse semigroups. Algebra and discrete mathematics, Tome 12 (2011) no. 1, pp. 1-19. http://geodesic.mathdoc.fr/item/ADM_2011_12_1_a0/

[1] B. Billhardt, “On a wreath product embedding and idempotent pure congruences on inverse semigroups”, Semigroup Forum, 45 (1992), 45–54 | DOI | MR | Zbl

[2] R. Brown and P.J. Higgins, “Crossed complexes and chain complexes with operators”, Math. Proc. Camb. Phil. Soc., 107 (1990), 33–57 | DOI | MR | Zbl

[3] R.H. Crowell, “The derived module of a homomorphism”, Adv. in Math., 6 (1971), 210–238 | DOI | MR | Zbl

[4] J. Funk, “Semigroups and toposes”, Semigroup Forum, 75 (2007), 481–520 | DOI | MR | Zbl

[5] V.S. Guba and S.J Pride, “On the left and right cohomological dimension of monoids”, Bull. London Math. Soc., 30 (1998), 391–396 | DOI | MR | Zbl

[6] K.W. Gruenberg, “Resolutions by relations”, J. London Math. Soc., 35 (1960), 481–494 | DOI | MR | Zbl

[7] K.W. Gruenberg, Cohomological Topics in Group Theory, Lect. Notes in Math., 143, Springer-Verlag, 1970 | MR | Zbl

[8] K.W. Gruenberg, “The universal coefficient theorem in the cohomology of groups”, J. London Math. Soc., 43 (1968), 239–241 | DOI | MR | Zbl

[9] O.A. Laudal, “Note on the projective limit of small categories”, Proc. Amer. Math. Soc., 33 (1972), 307–309 | DOI | MR | Zbl

[10] H. Lausch, “Cohomology of inverse semigroups”, J. Algebra, 35 (1975), 273–303 | DOI | MR | Zbl

[11] M.V. Lawson, Inverse Semigroups, World Scientific, 1998 | MR

[12] M.V Lawson, J. Matthews and T. Porter, “The homotopy theory of inverse semigroups”, Internat. J. Algebra Comput., 12 (2002), 755–790 | DOI | MR | Zbl

[13] J. Leech, “The $\mathcal D$-category of a semigroup”, Semigroup Forum, 11 (1975), 283–296 | DOI | MR

[14] M.Loganathan, “Cohomology of inverse semigroups”, J. Algebra, 1981 | MR | Zbl

[15] S.W. Margolis and J.E. Meakin, “Inverse monoids, trees, and context-free languages”, Trans. Amer. Math. Soc., 335 (1993), 259–276 | MR | Zbl

[16] W.R. Nico, “Wreath products and extensions”, Houston J. Math., 9 (1983), 71–99 | MR | Zbl

[17] U. Oberst, “Exactness of inverse limits”, Bull. Amer. Math. Soc., 74 (1968), 1129–1132 | DOI | MR | Zbl

[18] B. Steinberg, “Factorization theorems for morphisms of ordered groupoids and inverse semigroups”, Proc. Edin. Math. Soc., 44 (2001), 549–569 | DOI | MR | Zbl

[19] B. Steinberg, “A topological approach to inverse and regular semigroups”, Pacific J. Math., 208 (2003), 367–396 | DOI | MR | Zbl

[20] B. Steinberg and B. Tilson, “Categories as algebra, II”, Internat. J. Algebra Comput., 6 (2003), 627–703 | DOI | MR | Zbl

[21] J.B Stephen, “Presentations of inverse monoids”, J. Pure Appl. Algebra, 63 (1990), 81–112 | DOI | MR | Zbl

[22] P.J. Webb, “An introduction to the representations and cohomology of categories”, Group representation theory, eds. M. Geck et al., EPFL Press Lausanne, 2007, 149–173 | MR | Zbl

[23] P.J. Webb, “Resolutions, relation modules and Schur multipliers for categories”, J. Algebra, 326 (2011), 245–276 | DOI | MR | Zbl