Norm Kloosterman sums over $\mathbb Z[i]$
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 82-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

$n$-dimensional norm Kloosterman sums over the ring of the Gaussian numbers investigate. Nontrivial estimates of these sums were obtained.
Keywords: Kloosterman sum, Gaussian numbers.
@article{ADM_2011_11_2_a5,
     author = {O. Savastru and S. Varbanets},
     title = {Norm {Kloosterman} sums over $\mathbb Z[i]$},
     journal = {Algebra and discrete mathematics},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a5/}
}
TY  - JOUR
AU  - O. Savastru
AU  - S. Varbanets
TI  - Norm Kloosterman sums over $\mathbb Z[i]$
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 82
EP  - 91
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a5/
LA  - en
ID  - ADM_2011_11_2_a5
ER  - 
%0 Journal Article
%A O. Savastru
%A S. Varbanets
%T Norm Kloosterman sums over $\mathbb Z[i]$
%J Algebra and discrete mathematics
%D 2011
%P 82-91
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a5/
%G en
%F ADM_2011_11_2_a5
O. Savastru; S. Varbanets. Norm Kloosterman sums over $\mathbb Z[i]$. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 82-91. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a5/

[1] E. Bombieri, “On exponential sums in finite fields, II”, Invent. math., 47:1 (1978), 29–39 | DOI | MR | Zbl

[2] R. Bruggeman, Y. Motohashi, “Sum formula for Kloosterman sums and fourth moment of the Dedekind zeta-function over the Gaussian number field”, Functiones et Approximatio., XXXI (2003), 23–92 | MR | Zbl

[3] P. Deligne, “La conjecture de Weill, I”, Publ. Math. IHES, 43 (1974), 273–307 ; “II”, 52 (1980), 137–252 | MR | MR | Zbl

[4] B. Dwork, “In the rationality of the zeta-function of an algebraic variety”, Amer. J. Math., 82 (1960), 631–648 | DOI | MR | Zbl

[5] D.R. Heath-Brown, “The divisor function $d_3(n)$ in arithmetic progressions”, Acta Arith., XLVII (1986), 59–86 | MR

[6] C. Hooley, “An asymptotic formula in the theory of numbers”, Proc. London Math. Soc. (3), 7 (1957), 396–413 | DOI | MR | Zbl

[7] I.-M. Deshouillers, H. Iwaniec, “Kloosterman sums and Fourier coefficients of cusp forms”, Invent. math., 70 (1982), 219–288 | DOI | MR | Zbl

[8] S. P. Varbanets, “General Kloosterman sum over ring of Gaussian integers”, Ukr. Math. J., 59:9 (2007), 1179–1201 | DOI | MR

[9] O. Savastru, P. Varbanets, “An additive divisor problem in $\mathbb Z[i]$”, Algebra and discrete mathematics, 2003, no. 1, 103–110 | MR

[10] S. Varbanets, O. Savastru, “$n$-dimensional Kloosterman sums over the ring of the gaussian integers”, Vestnik I.I. Mechnikov Odessa National University (to appear)

[11] U.B. Zanbyrbaeva, Asympotic problems of number theory in sector region, Dissertation, Odessa, 1993 (Russian)

[12] N.V. Kuznetsov, “Petterson hypothesis for the form with weight zero and Linnik hypothesis”, Math. Sb., 111(153):3 (1980), 334–383 | MR | Zbl