Partitions of groups into thin subsets
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an infinite group with the identity $e$, $\kappa$ be an infinite cardinal $\leqslant |G|$. A subset $A\subset G$ is called $\kappa$-thin if $|gA\cap A|\leqslant\kappa$ for every $g\in G\setminus\{e\}$. We calculate the minimal cardinal $\mu(G,\kappa)$ such that $G$ can be partitioned in $\mu(G,\kappa)$ $\kappa$-thin subsets. In particular, we show that the statement $\mu(\mathbb R,\aleph_0)=\aleph_0$ is equivalent to the Continuum Hypothesis.
Keywords: $\kappa$-thin subsets of a group
Mots-clés : partition of a group.
@article{ADM_2011_11_2_a4,
     author = {Igor Protasov},
     title = {Partitions of groups into thin subsets},
     journal = {Algebra and discrete mathematics},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a4/}
}
TY  - JOUR
AU  - Igor Protasov
TI  - Partitions of groups into thin subsets
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 78
EP  - 81
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a4/
LA  - en
ID  - ADM_2011_11_2_a4
ER  - 
%0 Journal Article
%A Igor Protasov
%T Partitions of groups into thin subsets
%J Algebra and discrete mathematics
%D 2011
%P 78-81
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a4/
%G en
%F ADM_2011_11_2_a4
Igor Protasov. Partitions of groups into thin subsets. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 78-81. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a4/

[1] T. Banakh, I. Protasov, “Partition of groups and matroids into independent subsets”, Algebra Discrete Math., 10:1 (2010), 1–7 | MR | Zbl

[2] A. Bella, V. Malykhin, “On certain subsets of groups”, Questions and Answers in General Topology, 17 (1999), 183–187 | MR

[3] Ie. Lutsenko, I. V. Protasov, “Sparse, thin and other subsets of groups”, International Journal of Algebra and Computation, 19 (2009), 491–510 | DOI | MR | Zbl

[4] I. V. Protasov, “Selective survey on Subset Combinatorics of Groups”, Ukr. Math. Bull., 7 (2010), 220–257 | MR

[5] I. V. Protasov, “Packings and coverings of groups: some results and open problems”, Mat. Stud., 33 (2010), 115–119 | MR | Zbl

[6] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., 12, VNTL Publishers, Lviv, 2007 | MR | Zbl