On primarily multiplication modules over pullback rings
Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to present a new approach to the classification of indecomposable primarily multiplication modules with finite-dimensional top over pullback of two Dedekind domains. We extend the definition and results given in [10] to a more general primarily multiplication modules case.
Keywords: Pullback; Separated modules; Non-separated modules; Primarily multiplication modules; Dedekind domains; Pure-injective modules; Prüfer modules.
@article{ADM_2011_11_2_a0,
     author = {Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani},
     title = {On primarily multiplication modules over pullback rings},
     journal = {Algebra and discrete mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a0/}
}
TY  - JOUR
AU  - Reza Ebrahimi Atani
AU  - Shahabaddin Ebrahimi Atani
TI  - On primarily multiplication modules over pullback rings
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 1
EP  - 17
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a0/
LA  - en
ID  - ADM_2011_11_2_a0
ER  - 
%0 Journal Article
%A Reza Ebrahimi Atani
%A Shahabaddin Ebrahimi Atani
%T On primarily multiplication modules over pullback rings
%J Algebra and discrete mathematics
%D 2011
%P 1-17
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a0/
%G en
%F ADM_2011_11_2_a0
Reza Ebrahimi Atani; Shahabaddin Ebrahimi Atani. On primarily multiplication modules over pullback rings. Algebra and discrete mathematics, Tome 11 (2011) no. 2, pp. 1-17. http://geodesic.mathdoc.fr/item/ADM_2011_11_2_a0/

[1] I. Assem, D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, v. 1, London Math. Soc. Student Texts, 65, Techniques of Representation Theory, Cambridge Univ. Press, Cambridge-New York, 2007 | MR

[2] N. Aronszajn and U. Fixman, “Algebraic spectral problems”, Studi Math., 30 (1968), 273–338 | MR | Zbl

[3] A. Azizi, “Weak multiplication modules”, Czech. Math. J., 53 (2003), 529–536 | DOI | MR

[4] Z. A. El-Bast and P. F. Smith, “Multiplication modules”, Comm. Algebra, 16 (1988), 755–779 | DOI | MR | Zbl

[5] S. Ebrahimi Atani, “On pure-injective modules over pullback rings”, Comm. Algebra, 28 (2000), 4037–4069 | DOI | MR | Zbl

[6] S. Ebrahimi Atani, “On secondary modules over pullback rings”, Comm. Algebra, 30 (2002), 2675–2685 | DOI | MR | Zbl

[7] S. Ebrahimi Atani, “On prime modules over pullback rings”, Czech. Math. J., 54 (2004), 781–789 | DOI | MR | Zbl

[8] S. Ebrahimi Atani, “Indecomposable weak multiplication modules over Dedekind domains”, Demonstratio Mathematica, 41 (2008), 33–43 | MR | Zbl

[9] S. Ebrahimi Atani, “On secondary modules over Dedekind domains”, Southeast Asian Bull. Math., 25 (2001), 1–6 | DOI | MR

[10] S. Ebrahimi Atani and F. Farzalipour, “Weak multiplication modules over a pullback of Dedekind domains”, Colloquium Math., 114 (2009), 99–112 | DOI | MR | Zbl

[11] S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, “Indecomposable primarily comultiplication modules over a pullback of two Dedekind domains”, Colloquium Math., 120 (2010), 23–42 | DOI | MR | Zbl

[12] R. Ebrahimi Atani and S. Ebrahimi Atani, “Comultiplication modules over a pullback of Dedekind domains”, Czechoslovak Math. J., 59 (2009), 1103–1114 | DOI | MR | Zbl

[13] R. Ebrahimi Atani and S. Ebrahimi Atani, “Weak comultiplication modules over a pullback of commutative local Dedekind domains”, Algebra and Discrete Math., 1 (2009), 1–13 | MR | Zbl

[14] V. V. Kirichenko, “Classification of the pairs of mutually annihilating operators in a graded space and representations of a dyad of generalized uniserial algebra”, Rings an Linear Groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 75, 1978, 91–109 ; 196–197 (Russian) | MR | Zbl

[15] R. Kiełpiński, “On $\Gamma$-pure injective modules”, Bull. Polon. Acad. Sci. Math., 15 (1967), 127–131 | MR | Zbl

[16] I. Kaplansky, “Modules over Dedekind rings and valuation rings”, Trans. Amer. Math. Soc., 1952, 327–340 | DOI | MR | Zbl

[17] L. Levy, “Modules over pullbacks and subdirect sums”, J. Algebra, 71 (1981), 50–61 | DOI | MR | Zbl

[18] L. Levy, “Modules over Dedekind-like rings”, J. Algebra, 93 (1985), 1–116 | DOI | MR | Zbl

[19] L. Levy, “Mixed modules over $ZG$, $G$ cyclic of prime order, and over related Dedekind pullbacks”, J. Algebra, 71 (1981), 62–114 | DOI | MR | Zbl

[20] C. P. Lu, “Prime submodules of modules”, Comment Math. Univ. St. Paul, 33 (1984), 61–69 | MR | Zbl

[21] C. P. Lu, “Spectra of modules”, Comm. Algebra, 23 (1995), 3741–3752 | DOI | MR | Zbl

[22] R. L. MacCasland, M. E. Moore and P. F. Smith, “On the spectrum of a module over a commutative ring”, Comm. Algebra, 25 (1997), 79–103 | DOI | MR

[23] D. G. Northcott, F.R.S., Lessons on rings, modules and multiplicities, Cambridge University Press, London, 1969 | MR

[24] L. A. Nazarova and A. V. Roiter, “Finitely generated modules over a dyad of local Dedekind rings and finite groups having an abelian normal subgroup of index $p$”, Izv. Acad. Nauk SSSR, 33 (1969), 65–69 (Russian) | MR

[25] M. Prest, Model Theory and Modules, London Mathematical Society, Cambridge University Press, Cambridge, 1988 | MR

[26] C. M. Ringel, “Infinite-dimensional representations of finite-dimensional hereditary algebras”, Sump. Math. Inst. Naz. Alta Mat., 23 (1979), 235–255 | MR

[27] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra, Logic and Applications, 4, Gordon and Breach Science Publishers, Switzerland–Australia, 1992 | MR | Zbl

[28] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras, v. 3, London Math. Soc. Student Texts, 72, Representation-Infinite Tilted Algebras, Cambridge Univ. Press, Cambridge–New York, 2007 | MR | Zbl

[29] D. Simson, “On Corner type Endo-Wild algebras”, J. Pure Appl. Algebra, 202 (2005), 118–132 | DOI | MR | Zbl

[30] R. B. Warfield, “Purity and algebraic compactness for modules”, Pacific J. Math., 28 (1969), 699–719 | DOI | MR | Zbl