Some fixed point theorems for pseudo ordered sets
Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that for an isotone map $f$ on a pseudo ordered set $A$, the set of all fixed points of $f$ inherits the properties of $A$, namely, completeness, chain-completeness and weakly chain-completeness, as in the case of posets.
Keywords: pseudo ordered set, trellis, completeness, isotone map.
@article{ADM_2011_11_1_a1,
     author = {S. Parameshwara Bhatta and Shiju George},
     title = {Some fixed point theorems for pseudo ordered sets},
     journal = {Algebra and discrete mathematics},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a1/}
}
TY  - JOUR
AU  - S. Parameshwara Bhatta
AU  - Shiju George
TI  - Some fixed point theorems for pseudo ordered sets
JO  - Algebra and discrete mathematics
PY  - 2011
SP  - 17
EP  - 22
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a1/
LA  - en
ID  - ADM_2011_11_1_a1
ER  - 
%0 Journal Article
%A S. Parameshwara Bhatta
%A Shiju George
%T Some fixed point theorems for pseudo ordered sets
%J Algebra and discrete mathematics
%D 2011
%P 17-22
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a1/
%G en
%F ADM_2011_11_1_a1
S. Parameshwara Bhatta; Shiju George. Some fixed point theorems for pseudo ordered sets. Algebra and discrete mathematics, Tome 11 (2011) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ADM_2011_11_1_a1/

[1] S.P. Bhatta, “Weak chain-completeness and fixed point property for pseudo-ordered sets”, Czechoslovak Mathematical Journal, 55(130) (2005), 365–369 | DOI | MR | Zbl

[2] G. Markowsky, “Chain-complete posets and directed sets with applications”, Algebra Universalis, 6 (1976), 53–68 | DOI | MR | Zbl

[3] H. L. Skala, “Trellis Theory”, Algebra Universalis, 1 (1971), 218–233 | DOI | MR | Zbl

[4] H. Skala, Trellis Theory, Mem. Amer. Math. Soc., 1, Providence, 1972 | MR

[5] B. Schröder, Ordered Sets — An Introduction, Birkhäuser, Boston, Massachusetts, 2002 | MR

[6] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications”, Pacific J. Math., 5 (1955), 285–309 | DOI | MR | Zbl