Biserial minor degenerations of matrix algebras over a field
Algebra and discrete mathematics, Tome 9 (2010) no. 2, pp. 127-139
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $n\geq 2$ be a positive integer, $K$ an arbitrary field, and $q=[q^{(1)}|\dots|q^{(n)}]$ an $n$-block matrix of $n\times n$ square matrices $q^{(1)},\dots,q^{(n)}$ with coefficients in $K$ satisfying the conditions (C1) and (C2) listed in the introduction. We study minor degenerations $\mathbb M^q_n(K)$ of the full matrix algebra $\mathbb M_n(K)$ in the sense of Fujita–Saka—Simson [7]. A characterisation of all block matrices $q=[q^{(1)}|\dots|q^{(n)}]$ such that the algebra $\mathbb M^q_n(K)$ is basic and right biserial is given in the paper. We also prove that a basic algebra $\mathbb M^q_n(K)$ is right biserial if and only if $\mathbb M^q_n(K)$ is right special biserial. It is also shown that the $K$-dimensions of the left socle of $\mathbb M^q_n(K)$ and of the right socle of $\mathbb M^q_n(K)$ coincide, in case $\mathbb M^q_n(K)$ is basic and biserial.
Keywords:
right special biserial algebra, biserial algebra
Mots-clés : Gabriel quiver.
Mots-clés : Gabriel quiver.
@article{ADM_2010_9_2_a9,
author = {Anna W{\l}odarska},
title = {Biserial minor degenerations of matrix algebras over a~field},
journal = {Algebra and discrete mathematics},
pages = {127--139},
year = {2010},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a9/}
}
Anna Włodarska. Biserial minor degenerations of matrix algebras over a field. Algebra and discrete mathematics, Tome 9 (2010) no. 2, pp. 127-139. http://geodesic.mathdoc.fr/item/ADM_2010_9_2_a9/