Hall operators on the set of formations of finite groups
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 72-78
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi$ be a nonempty set of primes and let $\mathfrak F$ be a saturated formation of all finite soluble $\pi$-groups. It is constructed the saturated formation consisting of all finite $\pi$-soluble groups whose $\mathfrak F$-projectors contain a Hall $\pi$-subgroup.
Keywords:
$\pi$-subgroup, formation of finite groups, saturated formation, canonical satellite, $\mathfrak F$-projector.
Mots-clés : $\pi$-soluble group
Mots-clés : $\pi$-soluble group
@article{ADM_2010_9_1_a5,
author = {Andrei P. Mekhovich and Nikolay N. Vorob'ev and Nikolay T. Vorob'ev},
title = {Hall operators on the set of formations of finite groups},
journal = {Algebra and discrete mathematics},
pages = {72--78},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/}
}
TY - JOUR AU - Andrei P. Mekhovich AU - Nikolay N. Vorob'ev AU - Nikolay T. Vorob'ev TI - Hall operators on the set of formations of finite groups JO - Algebra and discrete mathematics PY - 2010 SP - 72 EP - 78 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/ LA - en ID - ADM_2010_9_1_a5 ER -
Andrei P. Mekhovich; Nikolay N. Vorob'ev; Nikolay T. Vorob'ev. Hall operators on the set of formations of finite groups. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 72-78. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/