Hall operators on the set of formations of finite groups
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 72-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a nonempty set of primes and let $\mathfrak F$ be a saturated formation of all finite soluble $\pi$-groups. It is constructed the saturated formation consisting of all finite $\pi$-soluble groups whose $\mathfrak F$-projectors contain a Hall $\pi$-subgroup.
Keywords: $\pi$-subgroup, formation of finite groups, saturated formation, canonical satellite, $\mathfrak F$-projector.
Mots-clés : $\pi$-soluble group
@article{ADM_2010_9_1_a5,
     author = {Andrei P. Mekhovich and Nikolay N. Vorob'ev and Nikolay T. Vorob'ev},
     title = {Hall operators on the set of formations of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {72--78},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/}
}
TY  - JOUR
AU  - Andrei P. Mekhovich
AU  - Nikolay N. Vorob'ev
AU  - Nikolay T. Vorob'ev
TI  - Hall operators on the set of formations of finite groups
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 72
EP  - 78
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/
LA  - en
ID  - ADM_2010_9_1_a5
ER  - 
%0 Journal Article
%A Andrei P. Mekhovich
%A Nikolay N. Vorob'ev
%A Nikolay T. Vorob'ev
%T Hall operators on the set of formations of finite groups
%J Algebra and discrete mathematics
%D 2010
%P 72-78
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/
%G en
%F ADM_2010_9_1_a5
Andrei P. Mekhovich; Nikolay N. Vorob'ev; Nikolay T. Vorob'ev. Hall operators on the set of formations of finite groups. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 72-78. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a5/