On commutative nilalgebras of low dimension
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 16-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that every commutative non-associative nilalgebra of dimension $\leq 7$, over a field of characteristic zero or sufficiently large is solvable.
Keywords:
commutative
Mots-clés : solvable, nilalgebra.
Mots-clés : solvable, nilalgebra.
@article{ADM_2010_9_1_a2,
author = {Juan C. Gutierrez Fernandez},
title = {On commutative nilalgebras of low dimension},
journal = {Algebra and discrete mathematics},
pages = {16--30},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/}
}
Juan C. Gutierrez Fernandez. On commutative nilalgebras of low dimension. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 16-30. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/