On commutative nilalgebras of low dimension
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 16-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every commutative non-associative nilalgebra of dimension $\leq 7$, over a field of characteristic zero or sufficiently large is solvable.
Keywords: commutative
Mots-clés : solvable, nilalgebra.
@article{ADM_2010_9_1_a2,
     author = {Juan C. Gutierrez Fernandez},
     title = {On commutative nilalgebras of low dimension},
     journal = {Algebra and discrete mathematics},
     pages = {16--30},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/}
}
TY  - JOUR
AU  - Juan C. Gutierrez Fernandez
TI  - On commutative nilalgebras of low dimension
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 16
EP  - 30
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/
LA  - en
ID  - ADM_2010_9_1_a2
ER  - 
%0 Journal Article
%A Juan C. Gutierrez Fernandez
%T On commutative nilalgebras of low dimension
%J Algebra and discrete mathematics
%D 2010
%P 16-30
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/
%G en
%F ADM_2010_9_1_a2
Juan C. Gutierrez Fernandez. On commutative nilalgebras of low dimension. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 16-30. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a2/