Length functions for semigroup embeddings
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following the work done in $[\mathrm O]$ for groups, we describe, for a given semigroup $S$, which functions $l\colon S\to\mathbb{N}$ can be realized up to equivalence as length functions $g\mapsto|g|_{H}$ by embedding $S$ into a finitely generated semigroup $H$. We also, following the work done in $[\mathrm O_2]$ and $[\mathrm{OS}]$, provide a complete description of length functions of a given finitely generated semigroup with enumerable set of relations inside a finitely presented semigroup.
Keywords: Membership problem, word problem, embeddings of semigroups, length function, distortion.
@article{ADM_2010_9_1_a1,
     author = {Tara Colleen Davis},
     title = {Length functions for semigroup embeddings},
     journal = {Algebra and discrete mathematics},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/}
}
TY  - JOUR
AU  - Tara Colleen Davis
TI  - Length functions for semigroup embeddings
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 1
EP  - 15
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/
LA  - en
ID  - ADM_2010_9_1_a1
ER  - 
%0 Journal Article
%A Tara Colleen Davis
%T Length functions for semigroup embeddings
%J Algebra and discrete mathematics
%D 2010
%P 1-15
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/
%G en
%F ADM_2010_9_1_a1
Tara Colleen Davis. Length functions for semigroup embeddings. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/