Length functions for semigroup embeddings
Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Math-Net.Ru
Following the work done in $[\mathrm O]$ for groups, we describe, for a given semigroup $S$, which functions $l\colon S\to\mathbb{N}$ can be realized up to equivalence as length functions $g\mapsto|g|_{H}$ by embedding $S$ into a finitely generated semigroup $H$. We also, following the work done in $[\mathrm O_2]$ and $[\mathrm{OS}]$, provide a complete description of length functions of a given finitely generated semigroup with enumerable set of relations inside a finitely presented semigroup.
Keywords:
Membership problem, word problem, embeddings of semigroups, length function, distortion.
@article{ADM_2010_9_1_a1,
author = {Tara Colleen Davis},
title = {Length functions for semigroup embeddings},
journal = {Algebra and discrete mathematics},
pages = {1--15},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/}
}
Tara Colleen Davis. Length functions for semigroup embeddings. Algebra and discrete mathematics, Tome 9 (2010) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/ADM_2010_9_1_a1/