Steadiness of polynomial rings
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 107-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A module $M$ is said to be small if the functor Hom$(M,-)$ commutes with direct sums and right steady rings are exactly those rings whose small modules are necessary finitely generated. We give several results on steadiness of polynomial rings, namely we prove that polynomials over a right perfect ring such that $\it{End}_R(S)$ is finitely generated over its center for every simple module $S$ form a right steady ring iff the set of variables is countable. Moreover, every polynomial ring in uncountably many variables is non-steady.
Keywords: small module, steady ring, polynomial ring.
@article{ADM_2010_10_2_a8,
     author = {J. \v{Z}emli\v{c}ka},
     title = {Steadiness of polynomial rings},
     journal = {Algebra and discrete mathematics},
     pages = {107--117},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a8/}
}
TY  - JOUR
AU  - J. Žemlička
TI  - Steadiness of polynomial rings
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 107
EP  - 117
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a8/
LA  - en
ID  - ADM_2010_10_2_a8
ER  - 
%0 Journal Article
%A J. Žemlička
%T Steadiness of polynomial rings
%J Algebra and discrete mathematics
%D 2010
%P 107-117
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a8/
%G en
%F ADM_2010_10_2_a8
J. Žemlička. Steadiness of polynomial rings. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 107-117. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a8/