Free semigroups in wreath powers of transformation semigroups
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 96-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established a criterion when the infinite wreath power of a finite transformation semigroup contains a free subsemigroup. It is shown that the infinite wreath power of a transformation semigroup either contains no free non-commutative subsemigroups or most of its finitely generated subsemigroups are free.
@article{ADM_2010_10_2_a7,
     author = {A. Oliynyk},
     title = {Free semigroups in wreath powers of transformation semigroups},
     journal = {Algebra and discrete mathematics},
     pages = {96--106},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a7/}
}
TY  - JOUR
AU  - A. Oliynyk
TI  - Free semigroups in wreath powers of transformation semigroups
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 96
EP  - 106
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a7/
LA  - en
ID  - ADM_2010_10_2_a7
ER  - 
%0 Journal Article
%A A. Oliynyk
%T Free semigroups in wreath powers of transformation semigroups
%J Algebra and discrete mathematics
%D 2010
%P 96-106
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a7/
%G en
%F ADM_2010_10_2_a7
A. Oliynyk. Free semigroups in wreath powers of transformation semigroups. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 96-106. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a7/