On modules over group rings of soluble groups with commutative ring of scalars
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author studies an $\mathbf RG$-module $A$ such that $\mathbf R$ is a commutative ring, $A/C_{A}(G)$ is not a Noetherian $\mathbf R$-module, $C_{G}(A)=1$$G$ is a soluble group. The system of all subgroups $H\leq G$, for which the quotient modules $A/C_{A}(H)$ are not Noetherian $\mathbf R$-modules, satisfies the maximal condition. This condition is called the condition max–nnd. The structure of the group $G$ is described.
Keywords: a maximal condition on subgroups, a Noetherian module
Mots-clés : a soluble group.
@article{ADM_2010_10_2_a4,
     author = {O. Yu. Dashkova},
     title = {On modules over group rings of soluble groups with commutative ring of scalars},
     journal = {Algebra and discrete mathematics},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On modules over group rings of soluble groups with commutative ring of scalars
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 51
EP  - 64
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/
LA  - en
ID  - ADM_2010_10_2_a4
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On modules over group rings of soluble groups with commutative ring of scalars
%J Algebra and discrete mathematics
%D 2010
%P 51-64
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/
%G en
%F ADM_2010_10_2_a4
O. Yu. Dashkova. On modules over group rings of soluble groups with commutative ring of scalars. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/