On modules over group rings of soluble groups with commutative ring of scalars
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 51-64
Voir la notice de l'article provenant de la source Math-Net.Ru
The author studies an $\mathbf RG$-module $A$ such that $\mathbf R$ is a commutative ring, $A/C_{A}(G)$ is not a Noetherian $\mathbf R$-module, $C_{G}(A)=1$, $G$ is a soluble group. The system of all subgroups $H\leq G$, for which the quotient modules $A/C_{A}(H)$ are not Noetherian $\mathbf R$-modules, satisfies the maximal condition. This condition is called the condition max–nnd. The structure of the group $G$ is described.
Keywords:
a maximal condition on subgroups, a Noetherian module
Mots-clés : a soluble group.
Mots-clés : a soluble group.
@article{ADM_2010_10_2_a4,
author = {O. Yu. Dashkova},
title = {On modules over group rings of soluble groups with commutative ring of scalars},
journal = {Algebra and discrete mathematics},
pages = {51--64},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/}
}
O. Yu. Dashkova. On modules over group rings of soluble groups with commutative ring of scalars. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a4/