2-Galois groups and the Kaplansky radical
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 29-50
Voir la notice de l'article provenant de la source Math-Net.Ru
An accurate description of the Galois group $G_{F}(2)$ of the maximal Galois 2-extension of a field $F$ may be given for fields $F$ admitting a 2-henselian valuation ring. In this note we generalize this result by characterizing the fields for which $G_{F}(2)$ decomposes as a free pro-2 product $\mathcal{F}*\mathcal{H}$ where $\mathcal{F}$ is a free closed subgroup of $G_{F}(2)$ and $\mathcal{H}$ is the Galois group of a 2-henselian extension of $F$. The free product decomposition of $G_{F}(2)$ is equivalent to the existence of a valuation ring compatible with the Kaplansky radical of $F$. Fields with Kaplansky radical fulfilling prescribed conditions are constructed, as an application.
Keywords:
Brauer group, free pro-2 product, 2-henselian valuation ring, quadratic form.
Mots-clés : Galois group
Mots-clés : Galois group
@article{ADM_2010_10_2_a3,
author = {R. P. Dario and A. Engler},
title = {2-Galois groups and the {Kaplansky} radical},
journal = {Algebra and discrete mathematics},
pages = {29--50},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a3/}
}
R. P. Dario; A. Engler. 2-Galois groups and the Kaplansky radical. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 29-50. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a3/