A sequence of factorizable subgroups
Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 19-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a non-abelian non-simple group. In this article the group $G$ such that $G=MC_G(M)$ will be studied, where $M$ is a proper maximal subgroup of $G$ and $C_G(M)$ is the centralizer of $M$ in $G$.
Keywords: central product, maximal subgroup, sequence of subgroups.
@article{ADM_2010_10_2_a2,
     author = {V. Dabbaghian},
     title = {A sequence of factorizable subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {19--28},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a2/}
}
TY  - JOUR
AU  - V. Dabbaghian
TI  - A sequence of factorizable subgroups
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 19
EP  - 28
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a2/
LA  - en
ID  - ADM_2010_10_2_a2
ER  - 
%0 Journal Article
%A V. Dabbaghian
%T A sequence of factorizable subgroups
%J Algebra and discrete mathematics
%D 2010
%P 19-28
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a2/
%G en
%F ADM_2010_10_2_a2
V. Dabbaghian. A sequence of factorizable subgroups. Algebra and discrete mathematics, Tome 10 (2010) no. 2, pp. 19-28. http://geodesic.mathdoc.fr/item/ADM_2010_10_2_a2/