Preradical and kernel functors over categories of $S$-acts
Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 57-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We concider the big lattices of preradicals and kernel functors over some cathegories of centered $S$-acts, where $S$ is monoid whit zero. We prove that those big lattices are two elements if and only if monoid $S$ is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of quantale of pretorsion theory.
Keywords:
monoids, $S$-acts, preradical, quasi-filter.
@article{ADM_2010_10_1_a5,
author = {Mykola Komarnitskiy and Roman Oliynyk},
title = {Preradical and kernel functors over categories of $S$-acts},
journal = {Algebra and discrete mathematics},
pages = {57--66},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/}
}
Mykola Komarnitskiy; Roman Oliynyk. Preradical and kernel functors over categories of $S$-acts. Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/