Preradical and kernel functors over categories of $S$-acts
Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We concider the big lattices of preradicals and kernel functors over some cathegories of centered $S$-acts, where $S$ is monoid whit zero. We prove that those big lattices are two elements if and only if monoid $S$ is groups with zero. A subset of a Rees generated pretorsion theory is a subquantale of quantale of pretorsion theory.
Keywords: monoids, $S$-acts, preradical, quasi-filter.
@article{ADM_2010_10_1_a5,
     author = {Mykola Komarnitskiy and Roman Oliynyk},
     title = {Preradical and kernel functors over categories of $S$-acts},
     journal = {Algebra and discrete mathematics},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/}
}
TY  - JOUR
AU  - Mykola Komarnitskiy
AU  - Roman Oliynyk
TI  - Preradical and kernel functors over categories of $S$-acts
JO  - Algebra and discrete mathematics
PY  - 2010
SP  - 57
EP  - 66
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/
LA  - en
ID  - ADM_2010_10_1_a5
ER  - 
%0 Journal Article
%A Mykola Komarnitskiy
%A Roman Oliynyk
%T Preradical and kernel functors over categories of $S$-acts
%J Algebra and discrete mathematics
%D 2010
%P 57-66
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/
%G en
%F ADM_2010_10_1_a5
Mykola Komarnitskiy; Roman Oliynyk. Preradical and kernel functors over categories of $S$-acts. Algebra and discrete mathematics, Tome 10 (2010) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/ADM_2010_10_1_a5/