Groups with many self-normalizing subgroups
Algebra and discrete mathematics, no. 4 (2009), pp. 55-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the structure of groups in which all members of a given relevant set of subgroups are self-normalizing. In particular, soluble groups in which every non-abelian (or every infinite non-abelian) subgroup is self-normalizing are described.
Keywords: self-normalizing subgroup, minimal non-abelian group.
@article{ADM_2009_4_a5,
     author = {M. De Falco and F. de Giovanni and C. Musella},
     title = {Groups with many self-normalizing subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {55--65},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_4_a5/}
}
TY  - JOUR
AU  - M. De Falco
AU  - F. de Giovanni
AU  - C. Musella
TI  - Groups with many self-normalizing subgroups
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 55
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_4_a5/
LA  - en
ID  - ADM_2009_4_a5
ER  - 
%0 Journal Article
%A M. De Falco
%A F. de Giovanni
%A C. Musella
%T Groups with many self-normalizing subgroups
%J Algebra and discrete mathematics
%D 2009
%P 55-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_4_a5/
%G en
%F ADM_2009_4_a5
M. De Falco; F. de Giovanni; C. Musella. Groups with many self-normalizing subgroups. Algebra and discrete mathematics, no. 4 (2009), pp. 55-65. http://geodesic.mathdoc.fr/item/ADM_2009_4_a5/