Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups
Algebra and discrete mathematics, no. 4 (2009), pp. 167-184
Cet article a éte moissonné depuis la source Math-Net.Ru
Minimal generating sets of a Sylow $p$-subgroup $P_n$ of the symmetric group $S_{p^n}$ are characterized. The number of ordered minimal generating sets of $P_n$ is calculated. The notion of the type of a generating set of $P_n$ is introduced and it is proved that $P_n$ contains minimal generating sets of all possible type. The isomorphism problem of Cayley graphs of $P_n$ with respect to their minimal generating sets is discussed.
Keywords:
Cayley graph, Sylow $p$-subgroup, Frattini subgroup.
@article{ADM_2009_4_a12,
author = {Anna J. Slupik and Vitaly I. Sushchansky},
title = {Minimal generating sets and {Cayley} graphs of {Sylow} $p$-subgroups of finite symmetric groups},
journal = {Algebra and discrete mathematics},
pages = {167--184},
year = {2009},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2009_4_a12/}
}
TY - JOUR AU - Anna J. Slupik AU - Vitaly I. Sushchansky TI - Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups JO - Algebra and discrete mathematics PY - 2009 SP - 167 EP - 184 IS - 4 UR - http://geodesic.mathdoc.fr/item/ADM_2009_4_a12/ LA - en ID - ADM_2009_4_a12 ER -
Anna J. Slupik; Vitaly I. Sushchansky. Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups. Algebra and discrete mathematics, no. 4 (2009), pp. 167-184. http://geodesic.mathdoc.fr/item/ADM_2009_4_a12/