Groups with small cocentralizers
Algebra and discrete mathematics, no. 4 (2009), pp. 135-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a group. If $S\subseteq G$ is a $G$–invariant subset of $G$, the factor-group $G/C_G(S)$ is called the cocentralizer of $S$ in $G$. In this survey-paper we review some results dealing with the influence of several cocentralizers on the structure of the group, a direction of research to which Leonid A. Kurdachenko was an active contributor, as well as many mathematicians all around the world.
Keywords: Cocentralizer in a group. Groups with prescribed conjugacy classes: $FC$–groups. $CC$–groups. $PC$–groups. $MC$–groups.
@article{ADM_2009_4_a10,
     author = {Javier Otal and Nikolaj N.Semko},
     title = {Groups with small cocentralizers},
     journal = {Algebra and discrete mathematics},
     pages = {135--157},
     publisher = {mathdoc},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_4_a10/}
}
TY  - JOUR
AU  - Javier Otal
AU  - Nikolaj N.Semko
TI  - Groups with small cocentralizers
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 135
EP  - 157
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_4_a10/
LA  - en
ID  - ADM_2009_4_a10
ER  - 
%0 Journal Article
%A Javier Otal
%A Nikolaj N.Semko
%T Groups with small cocentralizers
%J Algebra and discrete mathematics
%D 2009
%P 135-157
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_4_a10/
%G en
%F ADM_2009_4_a10
Javier Otal; Nikolaj N.Semko. Groups with small cocentralizers. Algebra and discrete mathematics, no. 4 (2009), pp. 135-157. http://geodesic.mathdoc.fr/item/ADM_2009_4_a10/