A note on semidirect products and nonabelian tensor products of groups
Algebra and discrete mathematics, no. 3 (2009), pp. 77-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ and $H$ be groups which act compatibly on one another. In [2] and [8] it is considered a group construction $\eta(G,H)$ which is related to the nonabelian tensor product $G\otimes H$. In this note we study embedding questions of certain semidirect products $A\rtimes H$ into $\eta(A, H)$, for finite abelian $H$-groups $A$. As a consequence of our results we obtain that complete Frobenius groups and affine groups over finite fields are embedded into $\eta(A, H)$ for convenient groups $A$ and $H$. Further, on considering finite metabelian groups $G$ in which the derived subgroup has order coprime with its index we establish the order of the nonabelian tensor square of $G$.
@article{ADM_2009_3_a7,
     author = {Irene N. Nakaoka and Nora{\'\i} R. Rocco},
     title = {A note on semidirect products and nonabelian tensor products of groups},
     journal = {Algebra and discrete mathematics},
     pages = {77--84},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_3_a7/}
}
TY  - JOUR
AU  - Irene N. Nakaoka
AU  - Noraí R. Rocco
TI  - A note on semidirect products and nonabelian tensor products of groups
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 77
EP  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_3_a7/
LA  - en
ID  - ADM_2009_3_a7
ER  - 
%0 Journal Article
%A Irene N. Nakaoka
%A Noraí R. Rocco
%T A note on semidirect products and nonabelian tensor products of groups
%J Algebra and discrete mathematics
%D 2009
%P 77-84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_3_a7/
%G en
%F ADM_2009_3_a7
Irene N. Nakaoka; Noraí R. Rocco. A note on semidirect products and nonabelian tensor products of groups. Algebra and discrete mathematics, no. 3 (2009), pp. 77-84. http://geodesic.mathdoc.fr/item/ADM_2009_3_a7/