The central polynomials for the finite dimensional Grassmann algebras
Algebra and discrete mathematics, no. 3 (2009), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we describe the central polynomials for the finite dimensional unitary Grassmann algebras $G_k$ over an infinite field $F$ of characteristic $\ne 2$. We exhibit a set of generators of $C(G_k)$, the T-space of the central polynomials of $G_k$ in a free associative $F$-algebra.
Keywords: polynomial identities, central polynomials, Grassmann algebra.
@article{ADM_2009_3_a6,
     author = {Plamen Koshlukov and Alexei Krasilnikov and \'Elida Alves da Silva},
     title = {The central polynomials for the finite dimensional {Grassmann} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {69--76},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/}
}
TY  - JOUR
AU  - Plamen Koshlukov
AU  - Alexei Krasilnikov
AU  - Élida Alves da Silva
TI  - The central polynomials for the finite dimensional Grassmann algebras
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 69
EP  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/
LA  - en
ID  - ADM_2009_3_a6
ER  - 
%0 Journal Article
%A Plamen Koshlukov
%A Alexei Krasilnikov
%A Élida Alves da Silva
%T The central polynomials for the finite dimensional Grassmann algebras
%J Algebra and discrete mathematics
%D 2009
%P 69-76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/
%G en
%F ADM_2009_3_a6
Plamen Koshlukov; Alexei Krasilnikov; Élida Alves da Silva. The central polynomials for the finite dimensional Grassmann algebras. Algebra and discrete mathematics, no. 3 (2009), pp. 69-76. http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/