The central polynomials for the finite dimensional Grassmann algebras
Algebra and discrete mathematics, no. 3 (2009), pp. 69-76
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we describe the central polynomials for the finite dimensional unitary Grassmann algebras $G_k$ over an infinite field $F$ of characteristic $\ne 2$. We exhibit a set of generators of $C(G_k)$, the T-space of the central polynomials of $G_k$ in a free associative $F$-algebra.
Keywords:
polynomial identities, central polynomials, Grassmann algebra.
@article{ADM_2009_3_a6,
author = {Plamen Koshlukov and Alexei Krasilnikov and \'Elida Alves da Silva},
title = {The central polynomials for the finite dimensional {Grassmann} algebras},
journal = {Algebra and discrete mathematics},
pages = {69--76},
publisher = {mathdoc},
number = {3},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/}
}
TY - JOUR AU - Plamen Koshlukov AU - Alexei Krasilnikov AU - Élida Alves da Silva TI - The central polynomials for the finite dimensional Grassmann algebras JO - Algebra and discrete mathematics PY - 2009 SP - 69 EP - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/ LA - en ID - ADM_2009_3_a6 ER -
Plamen Koshlukov; Alexei Krasilnikov; Élida Alves da Silva. The central polynomials for the finite dimensional Grassmann algebras. Algebra and discrete mathematics, no. 3 (2009), pp. 69-76. http://geodesic.mathdoc.fr/item/ADM_2009_3_a6/