A variant of the primitive element theorem for separable extensions of a~commutative ring
Algebra and discrete mathematics, no. 3 (2009), pp. 20-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we show that any strongly separable extension of a commutative ring $R$ can be embedded into another one having primitive element whenever every boolean localization of $R$ modulo its Jacobson radical is von Neumann regular and locally uniform.
Keywords: primitive element, separable extension, boolean localization.
@article{ADM_2009_3_a2,
     author = {Dirceu Bagio and Antonio Paques},
     title = {A variant of the primitive element theorem for separable extensions of a~commutative ring},
     journal = {Algebra and discrete mathematics},
     pages = {20--27},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/}
}
TY  - JOUR
AU  - Dirceu Bagio
AU  - Antonio Paques
TI  - A variant of the primitive element theorem for separable extensions of a~commutative ring
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 20
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/
LA  - en
ID  - ADM_2009_3_a2
ER  - 
%0 Journal Article
%A Dirceu Bagio
%A Antonio Paques
%T A variant of the primitive element theorem for separable extensions of a~commutative ring
%J Algebra and discrete mathematics
%D 2009
%P 20-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/
%G en
%F ADM_2009_3_a2
Dirceu Bagio; Antonio Paques. A variant of the primitive element theorem for separable extensions of a~commutative ring. Algebra and discrete mathematics, no. 3 (2009), pp. 20-27. http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/