A variant of the primitive element theorem for separable extensions of a commutative ring
Algebra and discrete mathematics, no. 3 (2009), pp. 20-27
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we show that any strongly separable extension of a commutative ring $R$ can be embedded into another one having primitive element whenever every boolean localization of $R$ modulo its Jacobson radical is von Neumann regular and locally uniform.
Keywords:
primitive element, separable extension, boolean localization.
@article{ADM_2009_3_a2,
author = {Dirceu Bagio and Antonio Paques},
title = {A variant of the primitive element theorem for separable extensions of a~commutative ring},
journal = {Algebra and discrete mathematics},
pages = {20--27},
year = {2009},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/}
}
Dirceu Bagio; Antonio Paques. A variant of the primitive element theorem for separable extensions of a commutative ring. Algebra and discrete mathematics, no. 3 (2009), pp. 20-27. http://geodesic.mathdoc.fr/item/ADM_2009_3_a2/