Frattini theory for $N$-Lie algebras
Algebra and discrete mathematics, no. 2 (2009), pp. 108-115
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a Frattini Theory for $n$-Lie algebras by extending theorems of Barnes' to the $n$-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.
Mots-clés :
Lie algebras, non-associative algebras.
@article{ADM_2009_2_a8,
author = {Michael Peretzian Williams},
title = {Frattini theory for $N${-Lie} algebras},
journal = {Algebra and discrete mathematics},
pages = {108--115},
publisher = {mathdoc},
number = {2},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/}
}
Michael Peretzian Williams. Frattini theory for $N$-Lie algebras. Algebra and discrete mathematics, no. 2 (2009), pp. 108-115. http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/