Frattini theory for $N$-Lie algebras
Algebra and discrete mathematics, no. 2 (2009), pp. 108-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a Frattini Theory for $n$-Lie algebras by extending theorems of Barnes' to the $n$-Lie algebra setting. Specifically, we show some sufficient conditions for the Frattini subalgebra to be an ideal and find an example where the Frattini subalgebra fails to be an ideal.
Mots-clés : Lie algebras, non-associative algebras.
@article{ADM_2009_2_a8,
     author = {Michael Peretzian Williams},
     title = {Frattini theory for $N${-Lie} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {108--115},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/}
}
TY  - JOUR
AU  - Michael Peretzian Williams
TI  - Frattini theory for $N$-Lie algebras
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 108
EP  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/
LA  - en
ID  - ADM_2009_2_a8
ER  - 
%0 Journal Article
%A Michael Peretzian Williams
%T Frattini theory for $N$-Lie algebras
%J Algebra and discrete mathematics
%D 2009
%P 108-115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/
%G en
%F ADM_2009_2_a8
Michael Peretzian Williams. Frattini theory for $N$-Lie algebras. Algebra and discrete mathematics, no. 2 (2009), pp. 108-115. http://geodesic.mathdoc.fr/item/ADM_2009_2_a8/