On some generalization of metahamiltonian groups
Algebra and discrete mathematics, no. 2 (2009), pp. 70-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally step groups at which all subgroups are or normal, or have Chernikov's derived subgroup are studied.
Keywords: subgroup, normal subgroup, locally graded group, locally finite group.
Mots-clés : group, Chernikov group
@article{ADM_2009_2_a5,
     author = {N. N. Semko and O. A. Yarovaya},
     title = {On some generalization of metahamiltonian groups},
     journal = {Algebra and discrete mathematics},
     pages = {70--78},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_2_a5/}
}
TY  - JOUR
AU  - N. N. Semko
AU  - O. A. Yarovaya
TI  - On some generalization of metahamiltonian groups
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 70
EP  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_2_a5/
LA  - en
ID  - ADM_2009_2_a5
ER  - 
%0 Journal Article
%A N. N. Semko
%A O. A. Yarovaya
%T On some generalization of metahamiltonian groups
%J Algebra and discrete mathematics
%D 2009
%P 70-78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_2_a5/
%G en
%F ADM_2009_2_a5
N. N. Semko; O. A. Yarovaya. On some generalization of metahamiltonian groups. Algebra and discrete mathematics, no. 2 (2009), pp. 70-78. http://geodesic.mathdoc.fr/item/ADM_2009_2_a5/