On the quasi-primary decomposition of HK-torsion theories
Algebra and discrete mathematics, no. 2 (2009), pp. 60-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of quasi-primary decompositions of torsion theories in the rings which derivatives. It is shown that every $HK$-torsion theory of the differential noetherian completely bounded ring it is an intersection of finite number of quasi-primary $HK$-torsion theories.
Keywords: $HK$-torsion theory, differential kernel functor, quasi-primary decomposition.
@article{ADM_2009_2_a4,
     author = {Mykola Komarnytskyi and Ivanna Melnyk},
     title = {On the quasi-primary decomposition of {HK-torsion} theories},
     journal = {Algebra and discrete mathematics},
     pages = {60--69},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_2_a4/}
}
TY  - JOUR
AU  - Mykola Komarnytskyi
AU  - Ivanna Melnyk
TI  - On the quasi-primary decomposition of HK-torsion theories
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 60
EP  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_2_a4/
LA  - en
ID  - ADM_2009_2_a4
ER  - 
%0 Journal Article
%A Mykola Komarnytskyi
%A Ivanna Melnyk
%T On the quasi-primary decomposition of HK-torsion theories
%J Algebra and discrete mathematics
%D 2009
%P 60-69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_2_a4/
%G en
%F ADM_2009_2_a4
Mykola Komarnytskyi; Ivanna Melnyk. On the quasi-primary decomposition of HK-torsion theories. Algebra and discrete mathematics, no. 2 (2009), pp. 60-69. http://geodesic.mathdoc.fr/item/ADM_2009_2_a4/