On action of outer derivations on nilpotent ideals of Lie algebras
Algebra and discrete mathematics, no. 1 (2009), pp. 74-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Action of outer derivations on nilpotent ideals of Lie algebras are considered. It is shown that for a nilpotent ideal $I$ of a Lie algebra $L$ over a field $F$ the ideal $I+D(I)$ is nilpotent, provided that $char F=0$ or $I$ nilpotent of nilpotency class less than $p-1$, where $p=char F$. In particular, the sum $N(L)$ of all nilpotent ideals of a Lie algebra $L$ is a characteristic ideal, if $char F=0$ or $N(L)$ is nilpotent of class less than $p-1$, where $p=char F$.
Keywords:
Lie algebra, derivation, nilpotent ideal.
Mots-clés : solvable radical
Mots-clés : solvable radical
@article{ADM_2009_1_a7,
author = {Dmitriy V. Maksimenko},
title = {On action of outer derivations on nilpotent ideals of {Lie} algebras},
journal = {Algebra and discrete mathematics},
pages = {74--82},
publisher = {mathdoc},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/}
}
Dmitriy V. Maksimenko. On action of outer derivations on nilpotent ideals of Lie algebras. Algebra and discrete mathematics, no. 1 (2009), pp. 74-82. http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/