On action of outer derivations on nilpotent ideals of Lie algebras
Algebra and discrete mathematics, no. 1 (2009), pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Action of outer derivations on nilpotent ideals of Lie algebras are considered. It is shown that for a nilpotent ideal $I$ of a Lie algebra $L$ over a field $F$ the ideal $I+D(I)$ is nilpotent, provided that $char F=0$ or $I$ nilpotent of nilpotency class less than $p-1$, where $p=char F$. In particular, the sum $N(L)$ of all nilpotent ideals of a Lie algebra $L$ is a characteristic ideal, if $char F=0$ or $N(L)$ is nilpotent of class less than $p-1$, where $p=char F$.
Keywords: Lie algebra, derivation, nilpotent ideal.
Mots-clés : solvable radical
@article{ADM_2009_1_a7,
     author = {Dmitriy V. Maksimenko},
     title = {On action of outer derivations on nilpotent ideals of {Lie} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {74--82},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/}
}
TY  - JOUR
AU  - Dmitriy V. Maksimenko
TI  - On action of outer derivations on nilpotent ideals of Lie algebras
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 74
EP  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/
LA  - en
ID  - ADM_2009_1_a7
ER  - 
%0 Journal Article
%A Dmitriy V. Maksimenko
%T On action of outer derivations on nilpotent ideals of Lie algebras
%J Algebra and discrete mathematics
%D 2009
%P 74-82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/
%G en
%F ADM_2009_1_a7
Dmitriy V. Maksimenko. On action of outer derivations on nilpotent ideals of Lie algebras. Algebra and discrete mathematics, no. 1 (2009), pp. 74-82. http://geodesic.mathdoc.fr/item/ADM_2009_1_a7/