Rings of functions on non-abelian groups
Algebra and discrete mathematics, no. 1 (2009), pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For several classes of finite nonabelian groups we investigate the structure of the ring of functions, $\mathcal R(C)$, determined by the cover $C$ of maximal abelian subgroups. We determine the Jacobson radical $J(\mathcal R(C))$ and the semisimple quotient ring $\mathcal R(C)/J(\mathcal R(C))$.
Keywords: Covers of groups; rings of functions.
@article{ADM_2009_1_a6,
     author = {C. J. Maxson},
     title = {Rings of functions on non-abelian groups},
     journal = {Algebra and discrete mathematics},
     pages = {59--73},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_1_a6/}
}
TY  - JOUR
AU  - C. J. Maxson
TI  - Rings of functions on non-abelian groups
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 59
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_1_a6/
LA  - en
ID  - ADM_2009_1_a6
ER  - 
%0 Journal Article
%A C. J. Maxson
%T Rings of functions on non-abelian groups
%J Algebra and discrete mathematics
%D 2009
%P 59-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_1_a6/
%G en
%F ADM_2009_1_a6
C. J. Maxson. Rings of functions on non-abelian groups. Algebra and discrete mathematics, no. 1 (2009), pp. 59-73. http://geodesic.mathdoc.fr/item/ADM_2009_1_a6/