Prime radical of Ore extensions over $\delta$-rigid rings
Algebra and discrete mathematics, no. 1 (2009), pp. 14-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let R be a ring. Let $\sigma$ be an automorphism of R and $\delta$ be a $\sigma$-derivation of R. We say that R is a $\delta$-rigid ring if $a\delta(a)\in P(R)$ implies $a\in P(R)$, $a\in R$; where P(R) is the prime radical of R. In this article, we find a relation between the prime radical of a $\delta$-rigid ring R and that of $R[x,\sigma,\delta]$. We generalize the result for a Noetherian Q-algebra (Q is the field of rational numbers).
Keywords: Radical, derivation, completely prime, $\delta$-ring, Q-algebra.
Mots-clés : automorphism
@article{ADM_2009_1_a2,
     author = {V. K. Bhat},
     title = {Prime radical of {Ore} extensions over $\delta$-rigid rings},
     journal = {Algebra and discrete mathematics},
     pages = {14--19},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2009_1_a2/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - Prime radical of Ore extensions over $\delta$-rigid rings
JO  - Algebra and discrete mathematics
PY  - 2009
SP  - 14
EP  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2009_1_a2/
LA  - en
ID  - ADM_2009_1_a2
ER  - 
%0 Journal Article
%A V. K. Bhat
%T Prime radical of Ore extensions over $\delta$-rigid rings
%J Algebra and discrete mathematics
%D 2009
%P 14-19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2009_1_a2/
%G en
%F ADM_2009_1_a2
V. K. Bhat. Prime radical of Ore extensions over $\delta$-rigid rings. Algebra and discrete mathematics, no. 1 (2009), pp. 14-19. http://geodesic.mathdoc.fr/item/ADM_2009_1_a2/