Gorenstein Latin squares
Algebra and discrete mathematics, no. 4 (2008), pp. 23-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a Gorenstein Latin square and consider loops and quasigroups related to them. We study some properties of normalized Gorenstein Latin squares and describe all of them with order $n\leq 8$.
@article{ADM_2008_4_a3,
     author = {M. A. Dokuchaev and V. V. Kirichenko and M. V. Plakhotnyk and B. V. Novikov},
     title = {Gorenstein {Latin} squares},
     journal = {Algebra and discrete mathematics},
     pages = {23--39},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_4_a3/}
}
TY  - JOUR
AU  - M. A. Dokuchaev
AU  - V. V. Kirichenko
AU  - M. V. Plakhotnyk
AU  - B. V. Novikov
TI  - Gorenstein Latin squares
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 23
EP  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_4_a3/
LA  - en
ID  - ADM_2008_4_a3
ER  - 
%0 Journal Article
%A M. A. Dokuchaev
%A V. V. Kirichenko
%A M. V. Plakhotnyk
%A B. V. Novikov
%T Gorenstein Latin squares
%J Algebra and discrete mathematics
%D 2008
%P 23-39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_4_a3/
%G en
%F ADM_2008_4_a3
M. A. Dokuchaev; V. V. Kirichenko; M. V. Plakhotnyk; B. V. Novikov. Gorenstein Latin squares. Algebra and discrete mathematics, no. 4 (2008), pp. 23-39. http://geodesic.mathdoc.fr/item/ADM_2008_4_a3/