On tame semigroups generated by idempotents with partial null multiplication
Algebra and discrete mathematics, no. 4 (2008), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $I$ be a finite set without $0$ and $J$ a subset in $I\times I$ without diagonal elements $(i,i)$. We define $S(I,J)$ to be the semigroup with generators $e_i$, where $i\in I\cup 0$, and the following relations: $e_0=0$; $e_i^2=e_i$ for any $i\in I$; $e_ie_j=0$ for any $(i,j)\in J$. In this paper we study finite-dimensional representations of such semigroups over a field $k$. In particular, we describe all finite semigroups $S(I,J)$ of tame representation type.
Keywords: semigroup, representation, the Tits form.
Mots-clés : tame type
@article{ADM_2008_4_a2,
     author = {Vitaliy M. Bondarenko and Olena M. Tertychna},
     title = {On tame  semigroups generated by idempotents with partial null multiplication},
     journal = {Algebra and discrete mathematics},
     pages = {15--22},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/}
}
TY  - JOUR
AU  - Vitaliy M. Bondarenko
AU  - Olena M. Tertychna
TI  - On tame  semigroups generated by idempotents with partial null multiplication
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 15
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/
LA  - en
ID  - ADM_2008_4_a2
ER  - 
%0 Journal Article
%A Vitaliy M. Bondarenko
%A Olena M. Tertychna
%T On tame  semigroups generated by idempotents with partial null multiplication
%J Algebra and discrete mathematics
%D 2008
%P 15-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/
%G en
%F ADM_2008_4_a2
Vitaliy M. Bondarenko; Olena M. Tertychna. On tame  semigroups generated by idempotents with partial null multiplication. Algebra and discrete mathematics, no. 4 (2008), pp. 15-22. http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/