On tame semigroups generated by idempotents with partial null multiplication
Algebra and discrete mathematics, no. 4 (2008), pp. 15-22
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $I$ be a finite set without $0$ and $J$ a subset in $I\times I$ without diagonal elements $(i,i)$. We define $S(I,J)$ to be the semigroup with generators $e_i$, where $i\in I\cup 0$, and the following relations: $e_0=0$; $e_i^2=e_i$ for any $i\in I$; $e_ie_j=0$ for any $(i,j)\in J$. In this paper we study finite-dimensional representations of such semigroups over a field $k$. In particular, we describe all finite semigroups $S(I,J)$ of tame representation type.
Keywords:
semigroup, representation, the Tits form.
Mots-clés : tame type
Mots-clés : tame type
@article{ADM_2008_4_a2,
author = {Vitaliy M. Bondarenko and Olena M. Tertychna},
title = {On tame semigroups generated by idempotents with partial null multiplication},
journal = {Algebra and discrete mathematics},
pages = {15--22},
year = {2008},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/}
}
Vitaliy M. Bondarenko; Olena M. Tertychna. On tame semigroups generated by idempotents with partial null multiplication. Algebra and discrete mathematics, no. 4 (2008), pp. 15-22. http://geodesic.mathdoc.fr/item/ADM_2008_4_a2/