Radical functors in the category of modules over different rings
Algebra and discrete mathematics, no. 3 (2008), pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The category $\mathcal{G}$ of all left modules over all rings is studied. Necessary and sufficient conditions for a preradical functor on $\mathcal{G}$ to be radical are given. Radical functors on essential subcategories of $\mathcal{G}$ are investigated.
Keywords: category, functor, radical functor, category of modules, essential subcategory.
@article{ADM_2008_3_a1,
     author = {Natalia Burban and Omelyan Horbachuk},
     title = {Radical functors in the category of modules over different rings},
     journal = {Algebra and discrete mathematics},
     pages = {30--39},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_3_a1/}
}
TY  - JOUR
AU  - Natalia Burban
AU  - Omelyan Horbachuk
TI  - Radical functors in the category of modules over different rings
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 30
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_3_a1/
LA  - en
ID  - ADM_2008_3_a1
ER  - 
%0 Journal Article
%A Natalia Burban
%A Omelyan Horbachuk
%T Radical functors in the category of modules over different rings
%J Algebra and discrete mathematics
%D 2008
%P 30-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_3_a1/
%G en
%F ADM_2008_3_a1
Natalia Burban; Omelyan Horbachuk. Radical functors in the category of modules over different rings. Algebra and discrete mathematics, no. 3 (2008), pp. 30-39. http://geodesic.mathdoc.fr/item/ADM_2008_3_a1/