Characterization of Chebyshev Numbers
Algebra and discrete mathematics, no. 2 (2008), pp. 65-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_n(x)$ be the degree-$n$ Chebyshev polynomial of the first kind. It is known [1,13] that $T_p(x) \equiv x^p\bmod{p}$, when $p$ is an odd prime, and therefore, $T_p(a)\equiv a\bmod{p}$ for all $a$. Our main result is the characterization of composite numbers $n$ satisfying the condition $T_n(a) \equiv a\bmod{n}$, for any integer $a$. We call these pseudoprimes Chebyshev numbers, and show that $n$ is a Chebyshev number if and only if $n$ is odd, squarefree, and for each of its prime divisors $p$, $n\equiv\pm 1\bmod p-1$ and $n\equiv\pm 1\bmod p+1$. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than $10^{10}$, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.
Keywords: Chebyshev polynomials, polynomial factorization, resultant, Carmichael numbers.
Mots-clés : pseudoprimes
@article{ADM_2008_2_a3,
     author = {David Pokrass Jacobs and Mohamed O. Rayes and Vilmar Trevisan},
     title = {Characterization of {Chebyshev} {Numbers}},
     journal = {Algebra and discrete mathematics},
     pages = {65--82},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_2_a3/}
}
TY  - JOUR
AU  - David Pokrass Jacobs
AU  - Mohamed O. Rayes
AU  - Vilmar Trevisan
TI  - Characterization of Chebyshev Numbers
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 65
EP  - 82
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_2_a3/
LA  - en
ID  - ADM_2008_2_a3
ER  - 
%0 Journal Article
%A David Pokrass Jacobs
%A Mohamed O. Rayes
%A Vilmar Trevisan
%T Characterization of Chebyshev Numbers
%J Algebra and discrete mathematics
%D 2008
%P 65-82
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_2_a3/
%G en
%F ADM_2008_2_a3
David Pokrass Jacobs; Mohamed O. Rayes; Vilmar Trevisan. Characterization of Chebyshev Numbers. Algebra and discrete mathematics, no. 2 (2008), pp. 65-82. http://geodesic.mathdoc.fr/item/ADM_2008_2_a3/