Baer semisimple modules and Baer rings
Algebra and discrete mathematics, no. 2 (2008), pp. 42-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Baer rings and Baer semisimple $R$-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring $R$ is a Baer ring if and only if $R$ itself, regarded as a regular $R$-module, is Baer semisimple.
Keywords: Baer module; Baer semisimple module; perpetual submodule; Baer ring.
@article{ADM_2008_2_a1,
     author = {Xiao Jiang Guo and K. P. Shum},
     title = {Baer semisimple modules and {Baer} rings},
     journal = {Algebra and discrete mathematics},
     pages = {42--49},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/}
}
TY  - JOUR
AU  - Xiao Jiang Guo
AU  - K. P. Shum
TI  - Baer semisimple modules and Baer rings
JO  - Algebra and discrete mathematics
PY  - 2008
SP  - 42
EP  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/
LA  - en
ID  - ADM_2008_2_a1
ER  - 
%0 Journal Article
%A Xiao Jiang Guo
%A K. P. Shum
%T Baer semisimple modules and Baer rings
%J Algebra and discrete mathematics
%D 2008
%P 42-49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/
%G en
%F ADM_2008_2_a1
Xiao Jiang Guo; K. P. Shum. Baer semisimple modules and Baer rings. Algebra and discrete mathematics, no. 2 (2008), pp. 42-49. http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/