Baer semisimple modules and Baer rings
Algebra and discrete mathematics, no. 2 (2008), pp. 42-49
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Baer rings and Baer semisimple $R$-modules which are generalizations of semisimple modules. Several characterization theorems of Baer semisimple modules are obtained. In particular, we prove that a ring $R$ is a Baer ring if and only if $R$ itself, regarded as a regular $R$-module, is Baer semisimple.
Keywords:
Baer module; Baer semisimple module; perpetual submodule; Baer ring.
@article{ADM_2008_2_a1,
author = {Xiao Jiang Guo and K. P. Shum},
title = {Baer semisimple modules and {Baer} rings},
journal = {Algebra and discrete mathematics},
pages = {42--49},
publisher = {mathdoc},
number = {2},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/}
}
Xiao Jiang Guo; K. P. Shum. Baer semisimple modules and Baer rings. Algebra and discrete mathematics, no. 2 (2008), pp. 42-49. http://geodesic.mathdoc.fr/item/ADM_2008_2_a1/